ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.09202
  4. Cited By
Biologically inspired protection of deep networks from adversarial
  attacks

Biologically inspired protection of deep networks from adversarial attacks

27 March 2017
Aran Nayebi
Surya Ganguli
    AAML
ArXivPDFHTML

Papers citing "Biologically inspired protection of deep networks from adversarial attacks"

13 / 13 papers shown
Title
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
92
73
0
07 Aug 2020
Comment on "Biologically inspired protection of deep networks from
  adversarial attacks"
Comment on "Biologically inspired protection of deep networks from adversarial attacks"
Wieland Brendel
Matthias Bethge
AAML
87
34
0
05 Apr 2017
Deep Learning Models of the Retinal Response to Natural Scenes
Deep Learning Models of the Retinal Response to Natural Scenes
Lane T. McIntosh
Niru Maheswaranathan
Aran Nayebi
Surya Ganguli
S. Baccus
62
254
0
06 Feb 2017
Exponential expressivity in deep neural networks through transient chaos
Exponential expressivity in deep neural networks through transient chaos
Ben Poole
Subhaneil Lahiri
M. Raghu
Jascha Narain Sohl-Dickstein
Surya Ganguli
90
591
0
16 Jun 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
105
3,962
0
24 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
99
3,072
0
14 Nov 2015
Distributional Smoothing with Virtual Adversarial Training
Distributional Smoothing with Virtual Adversarial Training
Takeru Miyato
S. Maeda
Masanori Koyama
Ken Nakae
S. Ishii
89
458
0
02 Jul 2015
Deep Knowledge Tracing
Deep Knowledge Tracing
Chris Piech
J. Bassen
Jonathan Huang
Surya Ganguli
Mehran Sahami
Leonidas Guibas
Jascha Narain Sohl-Dickstein
AI4Ed
HAI
94
1,152
0
19 Jun 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,049
0
20 Dec 2014
Towards Deep Neural Network Architectures Robust to Adversarial Examples
Towards Deep Neural Network Architectures Robust to Adversarial Examples
S. Gu
Luca Rigazio
AAML
76
841
0
11 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,918
1
21 Dec 2013
Saturating Auto-Encoders
Saturating Auto-Encoders
Rostislav Goroshin
Yann LeCun
62
43
0
16 Jan 2013
1