ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.07122
  4. Cited By
Evolving Parsimonious Networks by Mixing Activation Functions

Evolving Parsimonious Networks by Mixing Activation Functions

21 March 2017
Alexander Hagg
Maximilian Mensing
A. Asteroth
ArXivPDFHTML

Papers citing "Evolving Parsimonious Networks by Mixing Activation Functions"

3 / 3 papers shown
Title
Class Binarization to NeuroEvolution for Multiclass Classification
Class Binarization to NeuroEvolution for Multiclass Classification
Gongjin Lan
Zhenyu Gao
Lingyao Tong
Ting Liu
12
24
0
26 Aug 2023
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting
  Topologies for Side-channel Analysis
InfoNEAT: Information Theory-based NeuroEvolution of Augmenting Topologies for Side-channel Analysis
R. Acharya
F. Ganji
Domenic Forte
AAML
38
24
0
30 Apr 2021
Evolutionary Optimization of Deep Learning Activation Functions
Evolutionary Optimization of Deep Learning Activation Functions
G. Bingham
William Macke
Risto Miikkulainen
ODL
19
50
0
17 Feb 2020
1