Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.06692
Cited By
QMDP-Net: Deep Learning for Planning under Partial Observability
20 March 2017
Peter Karkus
David Hsu
Wee Sun Lee
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"QMDP-Net: Deep Learning for Planning under Partial Observability"
24 / 24 papers shown
Title
ToMCAT: Theory-of-Mind for Cooperative Agents in Teams via Multiagent Diffusion Policies
Pedro Sequeira
Vidyasagar Sadhu
Melinda Gervasio
DiffM
84
0
0
25 Feb 2025
Learning Online Belief Prediction for Efficient POMDP Planning in Autonomous Driving
Zhiyu Huang
Chen Tang
Chen Lv
Masayoshi Tomizuka
Wei Zhan
32
5
0
27 Jan 2024
DiffStack: A Differentiable and Modular Control Stack for Autonomous Vehicles
Peter Karkus
B. Ivanovic
Shie Mannor
Marco Pavone
23
45
0
13 Dec 2022
Private Multiparty Perception for Navigation
Hui Lu
Mia Chiquier
Carl Vondrick
EgoV
25
0
0
02 Dec 2022
Data-driven End-to-end Learning of Pole Placement Control for Nonlinear Dynamics via Koopman Invariant Subspaces
Tomoharu Iwata
Yoshinobu Kawahara
11
3
0
16 Aug 2022
Recurrent networks, hidden states and beliefs in partially observable environments
Gaspard Lambrechts
Adrien Bolland
D. Ernst
8
12
0
06 Aug 2022
Task Allocation with Load Management in Multi-Agent Teams
Haochen Wu
Amin Ghadami
A. E. Bayrak
J. Smereka
B. Epureanu
19
8
0
17 Jul 2022
Integrating Symmetry into Differentiable Planning with Steerable Convolutions
Linfeng Zhao
Xu Zhu
Lingzhi Kong
Robin G. Walters
Lawson L. S. Wong
20
7
0
08 Jun 2022
Compositional Learning-based Planning for Vision POMDPs
Sampada Deglurkar
M. H. Lim
Johnathan Tucker
Zachary Sunberg
Aleksandra Faust
Claire Tomlin
35
4
0
17 Dec 2021
Cut the CARP: Fishing for zero-shot story evaluation
Shahbuland Matiana
J. Smith
Ryan Teehan
Louis Castricato
Stella Biderman
Leo Gao
Spencer Frazier
47
16
0
06 Oct 2021
High-Speed Robot Navigation using Predicted Occupancy Maps
Kapil D. Katyal
A. Polevoy
Joseph L. Moore
Craig Knuth
K. Popek
22
24
0
22 Dec 2020
MELD: Meta-Reinforcement Learning from Images via Latent State Models
Tony Zhao
Anusha Nagabandi
Kate Rakelly
Chelsea Finn
Sergey Levine
OffRL
6
36
0
26 Oct 2020
Learning to plan with uncertain topological maps
E. Beeching
J. Dibangoye
Olivier Simonin
Christian Wolf
19
40
0
10 Jul 2020
When is Particle Filtering Efficient for Planning in Partially Observed Linear Dynamical Systems?
S. Du
Wei Hu
Zhiyuan Li
Ruoqi Shen
Zhao-quan Song
Jiajun Wu
28
1
0
10 Jun 2020
Transferable Task Execution from Pixels through Deep Planning Domain Learning
Kei Kase
Chris Paxton
H. Mazhar
T. Ogata
D. Fox
139
45
0
08 Mar 2020
POPCORN: Partially Observed Prediction COnstrained ReiNforcement Learning
Joseph D. Futoma
M. C. Hughes
Finale Doshi-Velez
OffRL
8
49
0
13 Jan 2020
Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces
Tobias Klamt
Sven Behnke
11
10
0
06 Mar 2019
Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees
Binghong Chen
Bo Dai
Qinjie Lin
Guo Ye
Han Liu
Le Song
16
51
0
28 Feb 2019
Policy Design for Active Sequential Hypothesis Testing using Deep Learning
D. Kartik
Ekraam Sabir
U. Mitra
Premkumar Natarajan
22
18
0
11 Oct 2018
Gated Path Planning Networks
Lisa Lee
Emilio Parisotto
Devendra Singh Chaplot
Eric P. Xing
Ruslan Salakhutdinov
24
81
0
17 Jun 2018
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank D. Wood
Shimon Whiteson
BDL
OffRL
11
258
0
06 Jun 2018
Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors
Rico Jonschkowski
Divyam Rastogi
Oliver Brock
16
135
0
28 May 2018
Data-driven Planning via Imitation Learning
Sanjiban Choudhury
M. Bhardwaj
S. Arora
Ashish Kapoor
G. Ranade
S. Scherer
Debadeepta Dey
41
80
0
17 Nov 2017
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
227
7,903
0
13 Jun 2015
1