Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.06476
Cited By
Practical Coreset Constructions for Machine Learning
19 March 2017
Olivier Bachem
Mario Lucic
Andreas Krause
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Coreset Constructions for Machine Learning"
37 / 37 papers shown
Title
Data Selection for ERMs
Steve Hanneke
Shay Moran
Alexander Shlimovich
Amir Yehudayoff
36
0
0
20 Apr 2025
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Emmanuel Bengio
Jason Hartford
48
1
0
25 Oct 2024
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Xin Zhang
Jiawei Du
Ping Liu
Joey Tianyi Zhou
DD
63
2
0
13 Aug 2024
No Dimensional Sampling Coresets for Classification
M. Alishahi
Jeff M. Phillips
42
1
0
07 Feb 2024
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
William Bankes
George Hughes
Ilija Bogunovic
Zi Wang
34
3
0
01 Dec 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
61
10
0
05 Jul 2023
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Zongxiong Chen
Jiahui Geng
Derui Zhu
Herbert Woisetschlaeger
Qing Li
Sonja Schimmler
Ruben Mayer
Chunming Rong
DD
26
9
0
05 May 2023
StyleDiff: Attribute Comparison Between Unlabeled Datasets in Latent Disentangled Space
Keisuke Kawano
Takuro Kutsuna
Ryoko Tokuhisa
Akihiro Nakamura
Yasushi Esaki
31
0
0
09 Mar 2023
Unified Convergence Theory of Stochastic and Variance-Reduced Cubic Newton Methods
El Mahdi Chayti
N. Doikov
Martin Jaggi
ODL
27
5
0
23 Feb 2023
Selective experience replay compression using coresets for lifelong deep reinforcement learning in medical imaging
Guangyao Zheng
Samson Zhou
Vladimir Braverman
M. Jacobs
V. Parekh
OffRL
CLL
24
3
0
22 Feb 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
47
73
0
11 Jan 2023
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
140
142
0
30 Oct 2022
Compressed Gastric Image Generation Based on Soft-Label Dataset Distillation for Medical Data Sharing
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
32
40
0
29 Sep 2022
Adapting to Online Label Shift with Provable Guarantees
Yong Bai
Yu-Jie Zhang
Peng Zhao
Masashi Sugiyama
Zhi-Hua Zhou
OOD
27
25
0
05 Jul 2022
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedML
DD
80
366
0
22 Mar 2022
Fast Distributed k-Means with a Small Number of Rounds
Tom Hess
Ron Visbord
Sivan Sabato
26
1
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Coresets for Decision Trees of Signals
Ibrahim Jubran
Ernesto Evgeniy Sanches Shayda
I. Newman
Dan Feldman
22
17
0
07 Oct 2021
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
24
38
0
28 Jun 2021
Partial Wasserstein Covering
Keisuke Kawano
Satoshi Koide
Keisuke Otaki
21
3
0
02 Jun 2021
Manipulating SGD with Data Ordering Attacks
Ilia Shumailov
Zakhar Shumaylov
Dmitry Kazhdan
Yiren Zhao
Nicolas Papernot
Murat A. Erdogdu
Ross J. Anderson
AAML
112
91
0
19 Apr 2021
Soft-Label Anonymous Gastric X-ray Image Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
42
51
0
07 Apr 2021
Towards understanding the power of quantum kernels in the NISQ era
Xinbiao Wang
Yuxuan Du
Yong Luo
Dacheng Tao
38
68
0
31 Mar 2021
One Line To Rule Them All: Generating LO-Shot Soft-Label Prototypes
Ilia Sucholutsky
Nam-Hwui Kim
R. Browne
Matthias Schonlau
VLM
29
6
0
15 Feb 2021
Semi-supervised Batch Active Learning via Bilevel Optimization
Zalan Borsos
Marco Tagliasacchi
Andreas Krause
32
23
0
19 Oct 2020
'Less Than One'-Shot Learning: Learning N Classes From M<N Samples
Ilia Sucholutsky
Matthias Schonlau
VLM
21
42
0
17 Sep 2020
Distilled One-Shot Federated Learning
Yanlin Zhou
George Pu
Xiyao Ma
Xiaolin Li
D. Wu
FedML
DD
62
158
0
17 Sep 2020
Coreset Clustering on Small Quantum Computers
T. Tomesh
P. Gokhale
Eric R. Anschuetz
Frederic T. Chong
21
26
0
30 Apr 2020
On Coresets for Support Vector Machines
M. Tukan
Cenk Baykal
Dan Feldman
Daniela Rus
35
27
0
15 Feb 2020
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
38
72
0
29 Oct 2019
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OOD
OODD
26
62
0
29 Oct 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
33
131
0
06 Oct 2019
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
20
1
0
04 May 2019
Approximating Spectral Clustering via Sampling: a Review
Nicolas M Tremblay
Andreas Loukas
21
45
0
29 Jan 2019
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
25
79
0
15 Apr 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
26
32
0
26 Sep 2017
1