ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06476
  4. Cited By
Practical Coreset Constructions for Machine Learning

Practical Coreset Constructions for Machine Learning

19 March 2017
Olivier Bachem
Mario Lucic
Andreas Krause
ArXivPDFHTML

Papers citing "Practical Coreset Constructions for Machine Learning"

37 / 37 papers shown
Title
Data Selection for ERMs
Data Selection for ERMs
Steve Hanneke
Shay Moran
Alexander Shlimovich
Amir Yehudayoff
36
0
0
20 Apr 2025
Efficient Biological Data Acquisition through Inference Set Design
Efficient Biological Data Acquisition through Inference Set Design
Ihor Neporozhnii
Julien Roy
Emmanuel Bengio
Jason Hartford
48
1
0
25 Oct 2024
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator
Xin Zhang
Jiawei Du
Ping Liu
Joey Tianyi Zhou
DD
63
2
0
13 Aug 2024
No Dimensional Sampling Coresets for Classification
No Dimensional Sampling Coresets for Classification
M. Alishahi
Jeff M. Phillips
42
1
0
07 Feb 2024
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
REDUCR: Robust Data Downsampling Using Class Priority Reweighting
William Bankes
George Hughes
Ilija Bogunovic
Zi Wang
34
3
0
01 Dec 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from
  Partially Revealed Sources
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
61
10
0
05 Jul 2023
A Comprehensive Study on Dataset Distillation: Performance, Privacy,
  Robustness and Fairness
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Zongxiong Chen
Jiahui Geng
Derui Zhu
Herbert Woisetschlaeger
Qing Li
Sonja Schimmler
Ruben Mayer
Chunming Rong
DD
26
9
0
05 May 2023
StyleDiff: Attribute Comparison Between Unlabeled Datasets in Latent
  Disentangled Space
StyleDiff: Attribute Comparison Between Unlabeled Datasets in Latent Disentangled Space
Keisuke Kawano
Takuro Kutsuna
Ryoko Tokuhisa
Akihiro Nakamura
Yasushi Esaki
31
0
0
09 Mar 2023
Unified Convergence Theory of Stochastic and Variance-Reduced Cubic
  Newton Methods
Unified Convergence Theory of Stochastic and Variance-Reduced Cubic Newton Methods
El Mahdi Chayti
N. Doikov
Martin Jaggi
ODL
27
5
0
23 Feb 2023
Selective experience replay compression using coresets for lifelong deep
  reinforcement learning in medical imaging
Selective experience replay compression using coresets for lifelong deep reinforcement learning in medical imaging
Guangyao Zheng
Samson Zhou
Vladimir Braverman
M. Jacobs
V. Parekh
OffRL
CLL
24
3
0
22 Feb 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
47
73
0
11 Jan 2023
Dataset Distillation via Factorization
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
140
142
0
30 Oct 2022
Compressed Gastric Image Generation Based on Soft-Label Dataset
  Distillation for Medical Data Sharing
Compressed Gastric Image Generation Based on Soft-Label Dataset Distillation for Medical Data Sharing
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
32
40
0
29 Sep 2022
Adapting to Online Label Shift with Provable Guarantees
Adapting to Online Label Shift with Provable Guarantees
Yong Bai
Yu-Jie Zhang
Peng Zhao
Masashi Sugiyama
Zhi-Hua Zhou
OOD
27
25
0
05 Jul 2022
Dataset Distillation by Matching Training Trajectories
Dataset Distillation by Matching Training Trajectories
George Cazenavette
Tongzhou Wang
Antonio Torralba
Alexei A. Efros
Jun-Yan Zhu
FedML
DD
80
366
0
22 Mar 2022
Fast Distributed k-Means with a Small Number of Rounds
Fast Distributed k-Means with a Small Number of Rounds
Tom Hess
Ron Visbord
Sivan Sabato
26
1
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Coresets for Decision Trees of Signals
Coresets for Decision Trees of Signals
Ibrahim Jubran
Ernesto Evgeniy Sanches Shayda
I. Newman
Dan Feldman
22
17
0
07 Oct 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
Adversarial Robustness of Streaming Algorithms through Importance
  Sampling
Adversarial Robustness of Streaming Algorithms through Importance Sampling
Vladimir Braverman
Avinatan Hassidim
Yossi Matias
Mariano Schain
Sandeep Silwal
Samson Zhou
AAML
OOD
24
38
0
28 Jun 2021
Partial Wasserstein Covering
Partial Wasserstein Covering
Keisuke Kawano
Satoshi Koide
Keisuke Otaki
21
3
0
02 Jun 2021
Manipulating SGD with Data Ordering Attacks
Manipulating SGD with Data Ordering Attacks
Ilia Shumailov
Zakhar Shumaylov
Dmitry Kazhdan
Yiren Zhao
Nicolas Papernot
Murat A. Erdogdu
Ross J. Anderson
AAML
112
91
0
19 Apr 2021
Soft-Label Anonymous Gastric X-ray Image Distillation
Soft-Label Anonymous Gastric X-ray Image Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
42
51
0
07 Apr 2021
Towards understanding the power of quantum kernels in the NISQ era
Towards understanding the power of quantum kernels in the NISQ era
Xinbiao Wang
Yuxuan Du
Yong Luo
Dacheng Tao
38
68
0
31 Mar 2021
One Line To Rule Them All: Generating LO-Shot Soft-Label Prototypes
One Line To Rule Them All: Generating LO-Shot Soft-Label Prototypes
Ilia Sucholutsky
Nam-Hwui Kim
R. Browne
Matthias Schonlau
VLM
29
6
0
15 Feb 2021
Semi-supervised Batch Active Learning via Bilevel Optimization
Semi-supervised Batch Active Learning via Bilevel Optimization
Zalan Borsos
Marco Tagliasacchi
Andreas Krause
32
23
0
19 Oct 2020
'Less Than One'-Shot Learning: Learning N Classes From M<N Samples
'Less Than One'-Shot Learning: Learning N Classes From M<N Samples
Ilia Sucholutsky
Matthias Schonlau
VLM
21
42
0
17 Sep 2020
Distilled One-Shot Federated Learning
Distilled One-Shot Federated Learning
Yanlin Zhou
George Pu
Xiyao Ma
Xiaolin Li
D. Wu
FedML
DD
62
158
0
17 Sep 2020
Coreset Clustering on Small Quantum Computers
Coreset Clustering on Small Quantum Computers
T. Tomesh
P. Gokhale
Eric R. Anschuetz
Frederic T. Chong
21
26
0
30 Apr 2020
On Coresets for Support Vector Machines
On Coresets for Support Vector Machines
M. Tukan
Cenk Baykal
Dan Feldman
Daniela Rus
35
27
0
15 Feb 2020
Small-GAN: Speeding Up GAN Training Using Core-sets
Small-GAN: Speeding Up GAN Training Using Core-sets
Samarth Sinha
Hang Zhang
Anirudh Goyal
Yoshua Bengio
Hugo Larochelle
Augustus Odena
GAN
38
72
0
29 Oct 2019
Distribution Density, Tails, and Outliers in Machine Learning: Metrics
  and Applications
Distribution Density, Tails, and Outliers in Machine Learning: Metrics and Applications
Nicholas Carlini
Ulfar Erlingsson
Nicolas Papernot
OOD
OODD
26
62
0
29 Oct 2019
Soft-Label Dataset Distillation and Text Dataset Distillation
Soft-Label Dataset Distillation and Text Dataset Distillation
Ilia Sucholutsky
Matthias Schonlau
DD
33
131
0
06 Oct 2019
Interpretability with Accurate Small Models
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
20
1
0
04 May 2019
Approximating Spectral Clustering via Sampling: a Review
Approximating Spectral Clustering via Sampling: a Review
Nicolas M Tremblay
Andreas Loukas
21
45
0
29 Jan 2019
Data-Dependent Coresets for Compressing Neural Networks with
  Applications to Generalization Bounds
Data-Dependent Coresets for Compressing Neural Networks with Applications to Generalization Bounds
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
25
79
0
15 Apr 2018
PASS-GLM: polynomial approximate sufficient statistics for scalable
  Bayesian GLM inference
PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference
Jonathan H. Huggins
Ryan P. Adams
Tamara Broderick
26
32
0
26 Sep 2017
1