ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.06240
  4. Cited By
Multi-fidelity Bayesian Optimisation with Continuous Approximations

Multi-fidelity Bayesian Optimisation with Continuous Approximations

18 March 2017
Kirthevasan Kandasamy
Gautam Dasarathy
J. Schneider
Barnabás Póczós
ArXivPDFHTML

Papers citing "Multi-fidelity Bayesian Optimisation with Continuous Approximations"

36 / 36 papers shown
Title
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Adaptive Replication Strategies in Trust-Region-Based Bayesian Optimization of Stochastic Functions
Mickael Binois
Jeffrey Larson
74
0
0
29 Apr 2025
Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
Frozen Layers: Memory-efficient Many-fidelity Hyperparameter Optimization
Timur Carstensen
Neeratyoy Mallik
Frank Hutter
Martin Rapp
AI4CE
30
0
0
14 Apr 2025
Co-Learning Bayesian Optimization
Co-Learning Bayesian Optimization
Zhendong Guo
Y. Ong
Tiantian He
Haitao Liu
97
2
0
23 Jan 2025
Automated design of nonreciprocal thermal emitters via Bayesian
  optimization
Automated design of nonreciprocal thermal emitters via Bayesian optimization
Bach Do
S. J. Ghalekohneh
Taiwo A. Adebiyi
Bo Zhao
Ruda Zhang
36
3
0
13 Sep 2024
Trajectory-Based Multi-Objective Hyperparameter Optimization for Model
  Retraining
Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining
Wenyu Wang
Zheyi Fan
Szu Hui Ng
33
0
0
24 May 2024
Active Learning and Bayesian Optimization: a Unified Perspective to
  Learn with a Goal
Active Learning and Bayesian Optimization: a Unified Perspective to Learn with a Goal
Francesco Di Fiore
Michela Nardelli
L. Mainini
37
22
0
02 Mar 2023
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian
  Regret Bounds
Randomized Gaussian Process Upper Confidence Bound with Tighter Bayesian Regret Bounds
Shion Takeno
Yu Inatsu
Masayuki Karasuyama
30
13
0
03 Feb 2023
Movement Penalized Bayesian Optimization with Application to Wind Energy
  Systems
Movement Penalized Bayesian Optimization with Application to Wind Energy Systems
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Andreas Krause
Ilija Bogunovic
16
12
0
14 Oct 2022
Joint Entropy Search for Multi-objective Bayesian Optimization
Joint Entropy Search for Multi-objective Bayesian Optimization
Ben Tu
Axel Gandy
N. Kantas
B. Shafei
27
38
0
06 Oct 2022
Bayesian Optimization Over Iterative Learners with Structured Responses:
  A Budget-aware Planning Approach
Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach
Syrine Belakaria
J. Doppa
Nicolò Fusi
Rishit Sheth
30
7
0
25 Jun 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
38
199
0
07 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Tengjiao Wang
36
15
0
06 Jun 2022
Learning the Effect of Registration Hyperparameters with HyperMorph
Learning the Effect of Registration Hyperparameters with HyperMorph
Andrew Hoopes
Malte Hoffmann
Douglas N. Greve
Bruce Fischl
John Guttag
Adrian V. Dalca
28
38
0
30 Mar 2022
Accelerating Bayesian Optimization for Biological Sequence Design with
  Denoising Autoencoders
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
38
89
0
23 Mar 2022
Bayesian Optimization of Function Networks
Bayesian Optimization of Function Networks
Raul Astudillo
P. Frazier
24
36
0
31 Dec 2021
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark
  Suite for Lasso
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
22
35
0
04 Nov 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
DHA: End-to-End Joint Optimization of Data Augmentation Policy,
  Hyper-parameter and Architecture
DHA: End-to-End Joint Optimization of Data Augmentation Policy, Hyper-parameter and Architecture
Kaichen Zhou
Lanqing Hong
Shuailiang Hu
Fengwei Zhou
Binxin Ru
Jiashi Feng
Zhenguo Li
59
10
0
13 Sep 2021
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
  Decomposition
VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space Decomposition
Yang Li
Yu Shen
Wentao Zhang
Jiawei Jiang
Bolin Ding
...
Jingren Zhou
Zhi-Xin Yang
Wentao Wu
Ce Zhang
Tengjiao Wang
LRM
29
44
0
19 Jul 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
33
22
0
10 Jun 2021
Lookahead Acquisition Functions for Finite-Horizon Time-Dependent
  Bayesian Optimization and Application to Quantum Optimal Control
Lookahead Acquisition Functions for Finite-Horizon Time-Dependent Bayesian Optimization and Application to Quantum Optimal Control
Sudharshan Ashwin Renganathan
Jeffrey Larson
Stefan M. Wild
23
7
0
20 May 2021
HyperMorph: Amortized Hyperparameter Learning for Image Registration
HyperMorph: Amortized Hyperparameter Learning for Image Registration
Andrew Hoopes
Malte Hoffmann
Bruce Fischl
John Guttag
Adrian V. Dalca
36
128
0
04 Jan 2021
Efficient Automatic CASH via Rising Bandits
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Tengjiao Wang
14
33
0
08 Dec 2020
Neural fidelity warping for efficient robot morphology design
Neural fidelity warping for efficient robot morphology design
Sha Hu
Zeshi Yang
Greg Mori
52
4
0
08 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
  Entropy Search Approach
Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space Entropy Search Approach
Syrine Belakaria
Aryan Deshwal
J. Doppa
6
41
0
02 Nov 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
MUMBO: MUlti-task Max-value Bayesian Optimization
MUMBO: MUlti-task Max-value Bayesian Optimization
Henry B. Moss
David S. Leslie
Paul Rayson
13
33
0
22 Jun 2020
Combinatorial Black-Box Optimization with Expert Advice
Combinatorial Black-Box Optimization with Expert Advice
Hamid Dadkhahi
Karthikeyan Shanmugam
Jesus Rios
Payel Das
Samuel C. Hoffman
T. Loeffler
S. Sankaranarayanan
22
16
0
06 Jun 2020
Adaptive Batching for Gaussian Process Surrogates with Application in
  Noisy Level Set Estimation
Adaptive Batching for Gaussian Process Surrogates with Application in Noisy Level Set Estimation
Xiong Lyu
M. Ludkovski
25
4
0
19 Mar 2020
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
30
51
0
04 Mar 2020
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
W. Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric P. Xing
29
174
0
15 Mar 2019
Random Search and Reproducibility for Neural Architecture Search
Random Search and Reproducibility for Neural Architecture Search
Liam Li
Ameet Talwalkar
OOD
33
716
0
20 Feb 2019
Multi-fidelity Gaussian Process Bandit Optimisation
Multi-fidelity Gaussian Process Bandit Optimisation
Kirthevasan Kandasamy
Gautam Dasarathy
Junier B. Oliva
J. Schneider
Barnabás Póczós
14
76
0
20 Mar 2016
1