Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.04782
Cited By
Online Learning Rate Adaptation with Hypergradient Descent
14 March 2017
A. G. Baydin
R. Cornish
David Martínez-Rubio
Mark W. Schmidt
Frank D. Wood
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Online Learning Rate Adaptation with Hypergradient Descent"
49 / 49 papers shown
Title
B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
Weihao Zeng
Yuzhen Huang
Lulu Zhao
Yijun Wang
Zifei Shan
Junxian He
LRM
40
7
0
23 Dec 2024
DeepMpMRI: Tensor-decomposition Regularized Learning for Fast and High-Fidelity Multi-Parametric Microstructural MR Imaging
Wen-Jie Fan
Jian Cheng
Cheng Li
Xinrui Ma
Jing Yang
...
Ruo-Nan Wu
Zan Chen
Yuanjing Feng
Hairong Zheng
Shanshan Wang
MedIm
25
1
0
06 May 2024
Downstream Task Guided Masking Learning in Masked Autoencoders Using Multi-Level Optimization
Han Guo
Ramtin Hosseini
Ruiyi Zhang
Sai Ashish Somayajula
Ranak Roy Chowdhury
Rajesh K. Gupta
Pengtao Xie
36
0
0
28 Feb 2024
MADA: Meta-Adaptive Optimizers through hyper-gradient Descent
Kaan Ozkara
Can Karakus
Parameswaran Raman
Mingyi Hong
Shoham Sabach
B. Kveton
V. Cevher
27
2
0
17 Jan 2024
SCoTTi: Save Computation at Training Time with an adaptive framework
Ziyu Li
Enzo Tartaglione
Van-Tam Nguyen
33
0
0
19 Dec 2023
Learning How to Propagate Messages in Graph Neural Networks
Teng Xiao
Zhengyu Chen
Donglin Wang
Suhang Wang
GNN
28
76
0
01 Oct 2023
Differentiable Arbitrating in Zero-sum Markov Games
Jing Wang
Meichen Song
Feng Gao
Boyi Liu
Zhaoran Wang
Yi Wu
37
2
0
20 Feb 2023
Contrastive Learning with Consistent Representations
Zihu Wang
Yu Wang
Hanbin Hu
Peng Li
CLL
29
5
0
03 Feb 2023
QLABGrad: a Hyperparameter-Free and Convergence-Guaranteed Scheme for Deep Learning
Minghan Fu
Fang-Xiang Wu
ODL
22
6
0
01 Feb 2023
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
30
5
0
30 Jan 2023
Read the Signs: Towards Invariance to Gradient Descent's Hyperparameter Initialization
Davood Wadi
M. Fredette
S. Sénécal
ODL
AI4CE
8
0
0
24 Jan 2023
A Nonstochastic Control Approach to Optimization
Xinyi Chen
Elad Hazan
47
5
0
19 Jan 2023
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Federated Hypergradient Descent
A. K. Kan
FedML
37
3
0
03 Nov 2022
Differentiable Self-Adaptive Learning Rate
Bozhou Chen
Hongzhi Wang
Chenmin Ba
ODL
17
4
0
19 Oct 2022
On Stability and Generalization of Bilevel Optimization Problem
Meng Ding
Ming Lei
Yunwen Lei
Di Wang
Jinhui Xu
32
0
0
03 Oct 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
64
0
26 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Learning Symbolic Model-Agnostic Loss Functions via Meta-Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
FedML
29
11
0
19 Sep 2022
Online Meta-Learning for Model Update Aggregation in Federated Learning for Click-Through Rate Prediction
Xianghang Liu
Bartlomiej Twardowski
Tri Kurniawan Wijaya
FedML
26
1
0
30 Aug 2022
Betty: An Automatic Differentiation Library for Multilevel Optimization
Sang Keun Choe
W. Neiswanger
P. Xie
Eric P. Xing
AI4CE
31
30
0
05 Jul 2022
Grad-GradaGrad? A Non-Monotone Adaptive Stochastic Gradient Method
Aaron Defazio
Baoyu Zhou
Lin Xiao
ODL
24
5
0
14 Jun 2022
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
32
36
0
27 May 2022
DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain Medical Images
Hongzheng Yang
Cheng Chen
Meirui Jiang
Quande Liu
Jianfeng Cao
Pheng Ann Heng
Qi Dou
OOD
37
26
0
27 May 2022
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Step-size Adaptation Using Exponentiated Gradient Updates
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
35
9
0
31 Jan 2022
A Stochastic Bundle Method for Interpolating Networks
Alasdair Paren
Leonard Berrada
Rudra P. K. Poudel
M. P. Kumar
24
4
0
29 Jan 2022
DDG-DA: Data Distribution Generation for Predictable Concept Drift Adaptation
Wendi Li
Xiao Yang
Weiqing Liu
Yingce Xia
Jiang Bian
DiffM
AI4TS
20
50
0
11 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Learning by Examples Based on Multi-level Optimization
Shentong Mo
P. Xie
26
0
0
22 Sep 2021
Graph Contrastive Learning Automated
Yuning You
Tianlong Chen
Yang Shen
Zhangyang Wang
24
447
0
10 Jun 2021
AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks
S. K. Roy
Mercedes Eugenia Paoletti
J. Haut
S. Dubey
Purushottam Kar
A. Plaza
B. B. Chaudhuri
ODL
19
18
0
21 May 2021
Robust MAML: Prioritization task buffer with adaptive learning process for model-agnostic meta-learning
Thanh Nguyen
Tung M. Luu
T. Pham
Sanzhar Rakhimkul
Chang D. Yoo
16
10
0
15 Mar 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
53
222
0
27 Jan 2021
Self-Tuning Stochastic Optimization with Curvature-Aware Gradient Filtering
Ricky T. Q. Chen
Dami Choi
Lukas Balles
David Duvenaud
Philipp Hennig
ODL
41
6
0
09 Nov 2020
A straightforward line search approach on the expected empirical loss for stochastic deep learning problems
Max Mutschler
A. Zell
30
0
0
02 Oct 2020
Improved Bilevel Model: Fast and Optimal Algorithm with Theoretical Guarantee
Junyi Li
Bin Gu
Heng-Chiao Huang
16
41
0
01 Sep 2020
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
46
1,928
0
11 Apr 2020
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
259
656
0
23 Mar 2020
Statistical Adaptive Stochastic Gradient Methods
Pengchuan Zhang
Hunter Lang
Qiang Liu
Lin Xiao
ODL
15
11
0
25 Feb 2020
On the adequacy of untuned warmup for adaptive optimization
Jerry Ma
Denis Yarats
53
70
0
09 Oct 2019
Learning an Adaptive Learning Rate Schedule
Zhen Xu
Andrew M. Dai
Jonas Kemp
Luke Metz
14
61
0
20 Sep 2019
Block stochastic gradient descent for large-scale tomographic reconstruction in a parallel network
Yushan Gao
A. Biguri
T. Blumensath
18
3
0
28 Mar 2019
Truncated Back-propagation for Bilevel Optimization
Amirreza Shaban
Ching-An Cheng
Nathan Hatch
Byron Boots
24
261
0
25 Oct 2018
Quasi-hyperbolic momentum and Adam for deep learning
Jerry Ma
Denis Yarats
ODL
84
129
0
16 Oct 2018
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,199
0
16 Aug 2016
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
39
2,746
0
20 Feb 2015
1