ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.02998
  4. Cited By
A note on quickly sampling a sparse matrix with low rank expectation

A note on quickly sampling a sparse matrix with low rank expectation

8 March 2017
Karl Rohe
Jun Tao
Xintian Han
Norbert Binkiewicz
ArXivPDFHTML

Papers citing "A note on quickly sampling a sparse matrix with low rank expectation"

4 / 4 papers shown
Title
Transformers meet Stochastic Block Models: Attention with Data-Adaptive
  Sparsity and Cost
Transformers meet Stochastic Block Models: Attention with Data-Adaptive Sparsity and Cost
Sungjun Cho
Seonwoo Min
Jinwoo Kim
Moontae Lee
Honglak Lee
Seunghoon Hong
47
3
0
27 Oct 2022
Systematic assessment of the quality of fit of the stochastic block
  model for empirical networks
Systematic assessment of the quality of fit of the stochastic block model for empirical networks
Felipe Vaca-Ramírez
Tiago P. Peixoto
48
8
0
05 Jan 2022
Estimating Graph Dimension with Cross-validated Eigenvalues
Estimating Graph Dimension with Cross-validated Eigenvalues
Fan Chen
S. Roch
Karl Rohe
Shuqi Yu
34
12
0
06 Aug 2021
A statistical interpretation of spectral embedding: the generalised
  random dot product graph
A statistical interpretation of spectral embedding: the generalised random dot product graph
Patrick Rubin-Delanchy
Joshua Cape
M. Tang
Carey E. Priebe
31
128
0
16 Sep 2017
1