ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.02563
  4. Cited By
Flow Fields: Dense Correspondence Fields for Highly Accurate Large
  Displacement Optical Flow Estimation

Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation

7 March 2017
C. Bailer
B. Taetz
D. Stricker
ArXivPDFHTML

Papers citing "Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation"

3 / 3 papers shown
Title
Joint Optical Flow and Temporally Consistent Semantic Segmentation
Joint Optical Flow and Temporally Consistent Semantic Segmentation
Junhwa Hur
Stefan Roth
61
71
0
26 Jul 2016
Flow Fields: Dense Correspondence Fields for Highly Accurate Large
  Displacement Optical Flow Estimation
Flow Fields: Dense Correspondence Fields for Highly Accurate Large Displacement Optical Flow Estimation
C. Bailer
B. Taetz
D. Stricker
51
216
0
21 Aug 2015
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
  Flow
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow
Jérôme Revaud
Philippe Weinzaepfel
Zaïd Harchaoui
Cordelia Schmid
69
796
0
12 Jan 2015
1