Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.01347
Cited By
v1
v2
v3 (latest)
Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles
3 March 2017
Jung-hun Kim
Se-Young Yun
Minchan Jeong
J. Nam
Jinwoo Shin
Richard Combes
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Contextual Linear Bandits under Noisy Features: Towards Bayesian Oracles"
9 / 9 papers shown
Title
Linear Bandits with Partially Observable Features
Wonyoung Hedge Kim
Sungwoo Park
G. Iyengar
A. Zeevi
Min Hwan Oh
196
1
0
10 Feb 2025
Handling Missing Data with Graph Representation Learning
Jiaxuan You
Xiaobai Ma
D. Ding
Mykel Kochenderfer
J. Leskovec
76
182
0
30 Oct 2020
Locally Differentially Private (Contextual) Bandits Learning
Kai Zheng
Tianle Cai
Weiran Huang
Zhenguo Li
Liwei Wang
90
66
0
01 Jun 2020
Adversarial Attacks on Linear Contextual Bandits
Evrard Garcelon
Baptiste Roziere
Laurent Meunier
Jean Tarbouriech
O. Teytaud
A. Lazaric
Matteo Pirotta
AAML
56
50
0
10 Feb 2020
Stochastic Bandits with Context Distributions
Johannes Kirschner
Andreas Krause
55
30
0
06 Jun 2019
Differentially Private Contextual Linear Bandits
R. Shariff
Or Sheffet
81
120
0
28 Sep 2018
High-dimensional covariance matrix estimation with missing observations
Karim Lounici
284
183
0
12 Jan 2012
A tail inequality for quadratic forms of subgaussian random vectors
Daniel J. Hsu
Sham Kakade
Tong Zhang
150
422
0
13 Oct 2011
High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
Po-Ling Loh
Martin J. Wainwright
131
562
0
16 Sep 2011
1