ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.01310
  4. Cited By
Count-Based Exploration with Neural Density Models

Count-Based Exploration with Neural Density Models

3 March 2017
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
ArXivPDFHTML

Papers citing "Count-Based Exploration with Neural Density Models"

25 / 125 papers shown
Title
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning
Vitchyr H. Pong
Murtaza Dalal
Steven Lin
Ashvin Nair
Shikhar Bahl
Sergey Levine
OffRL
SSL
33
269
0
08 Mar 2019
World Discovery Models
World Discovery Models
M. G. Azar
Bilal Piot
Bernardo Avila-Pires
Jean-Bastien Grill
Florent Altché
Rémi Munos
21
26
0
20 Feb 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
24
361
0
30 Jan 2019
Amplifying the Imitation Effect for Reinforcement Learning of UCAV's
  Mission Execution
Amplifying the Imitation Effect for Reinforcement Learning of UCAV's Mission Execution
G. Lee
Chang Ouk Kim
8
4
0
17 Jan 2019
Malthusian Reinforcement Learning
Malthusian Reinforcement Learning
Joel Z Leibo
Julien Perolat
Edward Hughes
S. Wheelwright
Adam H. Marblestone
Edgar A. Duénez-Guzmán
P. Sunehag
Iain Dunning
T. Graepel
AI4CE
27
37
0
17 Dec 2018
On the potential for open-endedness in neural networks
On the potential for open-endedness in neural networks
N. Guttenberg
N. Virgo
A. Penn
21
10
0
12 Dec 2018
Exploration Bonus for Regret Minimization in Undiscounted Discrete and
  Continuous Markov Decision Processes
Exploration Bonus for Regret Minimization in Undiscounted Discrete and Continuous Markov Decision Processes
Jian Qian
Ronan Fruit
Matteo Pirotta
A. Lazaric
6
10
0
11 Dec 2018
Learning Montezuma's Revenge from a Single Demonstration
Learning Montezuma's Revenge from a Single Demonstration
Tim Salimans
Richard J. Chen
31
136
0
08 Dec 2018
Provably Efficient Maximum Entropy Exploration
Provably Efficient Maximum Entropy Exploration
Elad Hazan
Sham Kakade
Karan Singh
A. V. Soest
27
292
0
06 Dec 2018
Multi-agent Deep Reinforcement Learning with Extremely Noisy
  Observations
Multi-agent Deep Reinforcement Learning with Extremely Noisy Observations
Ozsel Kilinc
Giovanni Montana
23
26
0
03 Dec 2018
Episodic Curiosity through Reachability
Episodic Curiosity through Reachability
Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
14
266
0
04 Oct 2018
Expert-augmented actor-critic for ViZDoom and Montezumas Revenge
Expert-augmented actor-critic for ViZDoom and Montezumas Revenge
Michal Garmulewicz
Henryk Michalewski
Piotr Milos
16
8
0
10 Sep 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCV
BDL
21
372
0
08 Jun 2018
Re-evaluating Evaluation
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
19
97
0
07 Jun 2018
Fast Exploration with Simplified Models and Approximately Optimistic
  Planning in Model Based Reinforcement Learning
Fast Exploration with Simplified Models and Approximately Optimistic Planning in Model Based Reinforcement Learning
Ramtin Keramati
Jay Whang
Patrick Cho
Emma Brunskill
OffRL
23
7
0
01 Jun 2018
Computational Theories of Curiosity-Driven Learning
Computational Theories of Curiosity-Driven Learning
Pierre-Yves Oudeyer
24
64
0
28 Feb 2018
Evolved Policy Gradients
Evolved Policy Gradients
Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
49
227
0
13 Feb 2018
Exploration in Feature Space for Reinforcement Learning
Exploration in Feature Space for Reinforcement Learning
S. N. Sasikumar
44
4
0
05 Oct 2017
Deep Abstract Q-Networks
Deep Abstract Q-Networks
Melrose Roderick
Christopher Grimm
Stefanie Tellex
27
33
0
02 Oct 2017
Trial without Error: Towards Safe Reinforcement Learning via Human
  Intervention
Trial without Error: Towards Safe Reinforcement Learning via Human Intervention
William Saunders
Girish Sastry
Andreas Stuhlmuller
Owain Evans
OffRL
19
229
0
17 Jul 2017
Hindsight Experience Replay
Hindsight Experience Replay
Marcin Andrychowicz
Dwight Crow
Alex Ray
Jonas Schneider
Rachel Fong
Peter Welinder
Bob McGrew
Joshua Tobin
Pieter Abbeel
Wojciech Zaremba
OffRL
63
2,293
0
05 Jul 2017
Count-Based Exploration in Feature Space for Reinforcement Learning
Count-Based Exploration in Feature Space for Reinforcement Learning
Jarryd Martin
S. N. Sasikumar
Tom Everitt
Marcus Hutter
24
122
0
25 Jun 2017
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement
  Learning
Feature Control as Intrinsic Motivation for Hierarchical Reinforcement Learning
Nat Dilokthanakul
Christos Kaplanis
Nick Pawlowski
Murray Shanahan
16
91
0
18 May 2017
Deep Reinforcement Learning: An Overview
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
104
1,503
0
25 Jan 2017
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
254
2,550
0
25 Jan 2016
Previous
123