ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00893
  4. Cited By
Being Robust (in High Dimensions) Can Be Practical

Being Robust (in High Dimensions) Can Be Practical

2 March 2017
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
ArXivPDFHTML

Papers citing "Being Robust (in High Dimensions) Can Be Practical"

27 / 177 papers shown
Title
Spectral Signatures in Backdoor Attacks
Spectral Signatures in Backdoor Attacks
Brandon Tran
Jerry Li
Aleksander Madry
AAML
24
775
0
01 Nov 2018
Robust Estimation and Generative Adversarial Nets
Robust Estimation and Generative Adversarial Nets
Chao Gao
Jiyi Liu
Yuan Yao
Weizhi Zhu
30
28
0
04 Oct 2018
Can Adversarially Robust Learning Leverage Computational Hardness?
Can Adversarially Robust Learning Leverage Computational Hardness?
Saeed Mahloujifar
Mohammad Mahmoody
AAML
OOD
19
48
0
02 Oct 2018
Estimating minimum effect with outlier selection
Estimating minimum effect with outlier selection
Alexandra Carpentier
S. Delattre
Étienne Roquain
Nicolas Verzélen
23
9
0
21 Sep 2018
Efficient Statistics, in High Dimensions, from Truncated Samples
Efficient Statistics, in High Dimensions, from Truncated Samples
C. Daskalakis
Themis Gouleakis
Christos Tzamos
Manolis Zampetakis
44
47
0
11 Sep 2018
The Curse of Concentration in Robust Learning: Evasion and Poisoning
  Attacks from Concentration of Measure
The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure
Saeed Mahloujifar
Dimitrios I. Diochnos
Mohammad Mahmoody
25
150
0
09 Sep 2018
Robust classification via MOM minimization
Robust classification via MOM minimization
Guillaume Lecué
M. Lerasle
Timlothée Mathieu
16
47
0
09 Aug 2018
Robust Inference Under Heteroskedasticity via the Hadamard Estimator
Robust Inference Under Heteroskedasticity via the Hadamard Estimator
Yan Sun
Weijie J. Su
Yachong Yang
Zhixiang Zhang
11
7
0
01 Jul 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed
  Learning
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
On the adversarial robustness of robust estimators
On the adversarial robustness of robust estimators
Lifeng Lai
Erhan Bayraktar
19
10
0
11 Jun 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
27
161
0
31 May 2018
High Dimensional Robust Sparse Regression
High Dimensional Robust Sparse Regression
L. Liu
Yanyao Shen
Tianyang Li
Constantine Caramanis
14
71
0
29 May 2018
Do Outliers Ruin Collaboration?
Do Outliers Ruin Collaboration?
Mingda Qiao
14
15
0
12 May 2018
Privately Learning High-Dimensional Distributions
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
149
0
01 May 2018
Securing Distributed Gradient Descent in High Dimensional Statistical
  Learning
Securing Distributed Gradient Descent in High Dimensional Statistical Learning
Lili Su
Jiaming Xu
FedML
137
35
0
26 Apr 2018
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Jacob Steinhardt
Alistair Stewart
23
288
0
07 Mar 2018
An Overview of Robust Subspace Recovery
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
28
130
0
02 Mar 2018
Robust Estimation via Robust Gradient Estimation
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
30
220
0
19 Feb 2018
Outlier-robust moment-estimation via sum-of-squares
Outlier-robust moment-estimation via sum-of-squares
Pravesh Kothari
David Steurer
22
64
0
30 Nov 2017
Learning Discrete Distributions from Untrusted Batches
Learning Discrete Distributions from Untrusted Batches
Mingda Qiao
Gregory Valiant
FedML
33
34
0
22 Nov 2017
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical
  Gaussians
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
22
146
0
20 Nov 2017
Learning Geometric Concepts with Nasty Noise
Learning Geometric Concepts with Nasty Noise
Ilias Diakonikolas
D. Kane
Alistair Stewart
AAML
37
85
0
05 Jul 2017
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
27
135
0
12 Apr 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary
  Outliers
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
39
138
0
15 Mar 2017
Statistical Query Lower Bounds for Robust Estimation of High-dimensional
  Gaussians and Gaussian Mixtures
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
Ilias Diakonikolas
D. Kane
Alistair Stewart
22
230
0
10 Nov 2016
Robust Learning of Fixed-Structure Bayesian Networks
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
46
46
0
23 Jun 2016
Robust Estimators in High Dimensions without the Computational
  Intractability
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
21
505
0
21 Apr 2016
Previous
1234