Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00893
Cited By
Being Robust (in High Dimensions) Can Be Practical
2 March 2017
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Being Robust (in High Dimensions) Can Be Practical"
27 / 177 papers shown
Title
Spectral Signatures in Backdoor Attacks
Brandon Tran
Jerry Li
Aleksander Madry
AAML
24
775
0
01 Nov 2018
Robust Estimation and Generative Adversarial Nets
Chao Gao
Jiyi Liu
Yuan Yao
Weizhi Zhu
30
28
0
04 Oct 2018
Can Adversarially Robust Learning Leverage Computational Hardness?
Saeed Mahloujifar
Mohammad Mahmoody
AAML
OOD
19
48
0
02 Oct 2018
Estimating minimum effect with outlier selection
Alexandra Carpentier
S. Delattre
Étienne Roquain
Nicolas Verzélen
23
9
0
21 Sep 2018
Efficient Statistics, in High Dimensions, from Truncated Samples
C. Daskalakis
Themis Gouleakis
Christos Tzamos
Manolis Zampetakis
44
47
0
11 Sep 2018
The Curse of Concentration in Robust Learning: Evasion and Poisoning Attacks from Concentration of Measure
Saeed Mahloujifar
Dimitrios I. Diochnos
Mohammad Mahmoody
25
150
0
09 Sep 2018
Robust classification via MOM minimization
Guillaume Lecué
M. Lerasle
Timlothée Mathieu
16
47
0
09 Aug 2018
Robust Inference Under Heteroskedasticity via the Hadamard Estimator
Yan Sun
Weijie J. Su
Yachong Yang
Zhixiang Zhang
11
7
0
01 Jul 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
32
98
0
14 Jun 2018
On the adversarial robustness of robust estimators
Lifeng Lai
Erhan Bayraktar
19
10
0
11 Jun 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
27
161
0
31 May 2018
High Dimensional Robust Sparse Regression
L. Liu
Yanyao Shen
Tianyang Li
Constantine Caramanis
14
71
0
29 May 2018
Do Outliers Ruin Collaboration?
Mingda Qiao
14
15
0
12 May 2018
Privately Learning High-Dimensional Distributions
Gautam Kamath
Jerry Li
Vikrant Singhal
Jonathan R. Ullman
FedML
72
149
0
01 May 2018
Securing Distributed Gradient Descent in High Dimensional Statistical Learning
Lili Su
Jiaming Xu
FedML
137
35
0
26 Apr 2018
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Jacob Steinhardt
Alistair Stewart
23
288
0
07 Mar 2018
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
28
130
0
02 Mar 2018
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
30
220
0
19 Feb 2018
Outlier-robust moment-estimation via sum-of-squares
Pravesh Kothari
David Steurer
22
64
0
30 Nov 2017
Learning Discrete Distributions from Untrusted Batches
Mingda Qiao
Gregory Valiant
FedML
33
34
0
22 Nov 2017
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
22
146
0
20 Nov 2017
Learning Geometric Concepts with Nasty Noise
Ilias Diakonikolas
D. Kane
Alistair Stewart
AAML
37
85
0
05 Jul 2017
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
27
135
0
12 Apr 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
39
138
0
15 Mar 2017
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
Ilias Diakonikolas
D. Kane
Alistair Stewart
22
230
0
10 Nov 2016
Robust Learning of Fixed-Structure Bayesian Networks
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
46
46
0
23 Jun 2016
Robust Estimators in High Dimensions without the Computational Intractability
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jingkai Li
Ankur Moitra
Alistair Stewart
21
505
0
21 Apr 2016
Previous
1
2
3
4