Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1703.00102
Cited By
SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient
1 March 2017
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient"
50 / 123 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
35
0
0
12 May 2025
Adaptive Extrapolated Proximal Gradient Methods with Variance Reduction for Composite Nonconvex Finite-Sum Minimization
Ganzhao Yuan
43
0
0
28 Feb 2025
A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
Wei Liu
Yangyang Xu
74
3
0
31 Jan 2025
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Zhong Zheng
Haochen Zhang
Lingzhou Xue
OffRL
78
2
0
10 Oct 2024
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
186
0
0
10 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation
Marina Sheshukova
Denis Belomestny
Alain Durmus
Eric Moulines
Alexey Naumov
S. Samsonov
41
1
0
07 Oct 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
21
5
0
31 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
40
0
0
19 Jul 2024
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient
Hao Di
Haishan Ye
Yueling Zhang
Xiangyu Chang
Guang Dai
Ivor W. Tsang
40
1
0
28 May 2024
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems
Yanjie Zhong
Jiaqi Li
Soumendra Lahiri
29
1
0
29 Jan 2024
On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization
Ling Liang
Haizhao Yang
14
1
0
23 Jan 2024
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
45
0
0
21 Nov 2023
Efficiently Escaping Saddle Points for Non-Convex Policy Optimization
Sadegh Khorasani
Saber Salehkaleybar
Negar Kiyavash
Niao He
Matthias Grossglauser
29
1
0
15 Nov 2023
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
36
1
0
09 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
40
1
0
08 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
26
1
0
24 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
20
8
0
14 Jul 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
34
0
0
02 Jun 2023
Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs with Short Burn-In Time
Xiang Ji
Gen Li
OffRL
32
7
0
24 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
32
18
0
07 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
35
20
0
14 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
32
1
0
28 Jan 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
31
15
0
16 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
37
6
0
09 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
34
0
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
36
14
0
09 Dec 2022
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
73
5
0
05 Dec 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
26
11
0
24 Nov 2022
Adaptive Stochastic Optimisation of Nonconvex Composite Objectives
Weijia Shao
F. Sivrikaya
S. Albayrak
21
0
0
21 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
48
102
0
15 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
24
15
0
03 Nov 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
40
2
0
12 Oct 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
38
1
0
17 Aug 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
35
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
30
15
0
08 Jul 2022
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
Lam M. Nguyen
Trang H. Tran
32
2
0
13 Jun 2022
Stochastic Gradient Methods with Preconditioned Updates
Abdurakhmon Sadiev
Aleksandr Beznosikov
Abdulla Jasem Almansoori
Dmitry Kamzolov
R. Tappenden
Martin Takáč
ODL
36
9
0
01 Jun 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
40
1
0
28 Apr 2022
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
44
179
0
28 Mar 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
81
17
0
15 Feb 2022
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
Trang H. Tran
K. Scheinberg
Lam M. Nguyen
40
11
0
07 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
31
15
0
05 Feb 2022
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation
Matilde Gargiani
Andrea Zanelli
Andrea Martinelli
Tyler H. Summers
John Lygeros
33
14
0
01 Feb 2022
DSAG: A mixed synchronous-asynchronous iterative method for straggler-resilient learning
A. Severinson
E. Rosnes
S. E. Rouayheb
Alexandre Graell i Amat
22
2
0
27 Nov 2021
1
2
3
Next