ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1703.00102
  4. Cited By
SARAH: A Novel Method for Machine Learning Problems Using Stochastic
  Recursive Gradient

SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient

1 March 2017
Lam M. Nguyen
Jie Liu
K. Scheinberg
Martin Takáč
    ODL
ArXivPDFHTML

Papers citing "SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient"

50 / 123 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
35
0
0
12 May 2025
Adaptive Extrapolated Proximal Gradient Methods with Variance Reduction for Composite Nonconvex Finite-Sum Minimization
Adaptive Extrapolated Proximal Gradient Methods with Variance Reduction for Composite Nonconvex Finite-Sum Minimization
Ganzhao Yuan
43
0
0
28 Feb 2025
A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
Wei Liu
Yangyang Xu
74
3
0
31 Jan 2025
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Gap-Dependent Bounds for Q-Learning using Reference-Advantage Decomposition
Zhong Zheng
Haochen Zhang
Lingzhou Xue
OffRL
78
2
0
10 Oct 2024
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
186
0
0
10 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
63
0
0
08 Oct 2024
Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation
Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation
Marina Sheshukova
Denis Belomestny
Alain Durmus
Eric Moulines
Alexey Naumov
S. Samsonov
41
1
0
07 Oct 2024
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Gradient-Free Method for Heavily Constrained Nonconvex Optimization
Wanli Shi
Hongchang Gao
Bin Gu
21
5
0
31 Aug 2024
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
SOREL: A Stochastic Algorithm for Spectral Risks Minimization
Yuze Ge
Rujun Jiang
40
0
0
19 Jul 2024
Double Variance Reduction: A Smoothing Trick for Composite Optimization
  Problems without First-Order Gradient
Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient
Hao Di
Haishan Ye
Yueling Zhang
Xiangyu Chang
Guang Dai
Ivor W. Tsang
40
1
0
28 May 2024
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex
  Finite Sum Problems
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems
Yanjie Zhong
Jiaqi Li
Soumendra Lahiri
29
1
0
29 Jan 2024
On the Stochastic (Variance-Reduced) Proximal Gradient Method for
  Regularized Expected Reward Optimization
On the Stochastic (Variance-Reduced) Proximal Gradient Method for Regularized Expected Reward Optimization
Ling Liang
Haizhao Yang
14
1
0
23 Jan 2024
FedDRO: Federated Compositional Optimization for Distributionally Robust
  Learning
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
45
0
0
21 Nov 2023
Efficiently Escaping Saddle Points for Non-Convex Policy Optimization
Efficiently Escaping Saddle Points for Non-Convex Policy Optimization
Sadegh Khorasani
Saber Salehkaleybar
Negar Kiyavash
Niao He
Matthias Grossglauser
29
1
0
15 Nov 2023
A Coefficient Makes SVRG Effective
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
36
1
0
09 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
40
1
0
08 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex
  Optimization
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
26
1
0
24 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient
  Algorithms and Improved Rates
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
45
5
0
15 Oct 2023
Variance-reduced accelerated methods for decentralized stochastic
  double-regularized nonconvex strongly-concave minimax problems
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
20
8
0
14 Jul 2023
Federated Multi-Sequence Stochastic Approximation with Local
  Hypergradient Estimation
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
34
0
0
02 Jun 2023
Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs
  with Short Burn-In Time
Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs with Short Burn-In Time
Xiang Ji
Gen Li
OffRL
32
7
0
24 May 2023
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates
  and Practical Features
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Gauthier Gidel
25
5
0
23 Apr 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with
  Nonconvex Lower-Level
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
32
18
0
07 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular
  Dynamics
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
35
20
0
14 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy
  Optimization
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
32
1
0
28 Jan 2023
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic
  Optimization
Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization
Le‐Yu Chen
Jing Xu
Luo Luo
31
15
0
16 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient
  Correction
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
37
6
0
09 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for
  non-convex composite optimization
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
46
6
0
02 Jan 2023
Gradient Descent-Type Methods: Background and Simple Unified Convergence
  Analysis
Gradient Descent-Type Methods: Background and Simple Unified Convergence Analysis
Quoc Tran-Dinh
Marten van Dijk
34
0
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
32
3
0
12 Dec 2022
Cyclic Block Coordinate Descent With Variance Reduction for Composite
  Nonconvex Optimization
Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization
Xu Cai
Chaobing Song
Stephen J. Wright
Jelena Diakonikolas
36
14
0
09 Dec 2022
An Efficient Stochastic Algorithm for Decentralized
  Nonconvex-Strongly-Concave Minimax Optimization
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
Le‐Yu Chen
Haishan Ye
Luo Luo
73
5
0
05 Dec 2022
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class
  of Nonconvex-Nonconcave Minimax Problems
Zeroth-Order Alternating Gradient Descent Ascent Algorithms for a Class of Nonconvex-Nonconcave Minimax Problems
Zi Xu
Ziqi Wang
Junlin Wang
Y. Dai
26
11
0
24 Nov 2022
Adaptive Stochastic Optimisation of Nonconvex Composite Objectives
Adaptive Stochastic Optimisation of Nonconvex Composite Objectives
Weijia Shao
F. Sivrikaya
S. Albayrak
21
0
0
21 Nov 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural
  Policy Gradient Methods
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
Kaipeng Zhang
Tamer Basar
W. Yin
48
102
0
15 Nov 2022
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum
  Minimization
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis
Stratis Skoulakis
Kimon Antonakopoulos
L. Dadi
V. Cevher
24
15
0
03 Nov 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
  Cocoercive Variational Inequalities
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
40
2
0
12 Oct 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient
  Method for Distributed Learning in Computing Clusters
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
38
1
0
17 Aug 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled
  Compositional Optimization
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
35
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for
  nonconvex finite sum minimization
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
29
2
0
17 Jul 2022
Tackling Data Heterogeneity: A New Unified Framework for Decentralized
  SGD with Sample-induced Topology
Tackling Data Heterogeneity: A New Unified Framework for Decentralized SGD with Sample-induced Topology
Yan Huang
Ying Sun
Zehan Zhu
Changzhi Yan
Jinming Xu
FedML
30
15
0
08 Jul 2022
On the Convergence to a Global Solution of Shuffling-Type Gradient
  Algorithms
On the Convergence to a Global Solution of Shuffling-Type Gradient Algorithms
Lam M. Nguyen
Trang H. Tran
32
2
0
13 Jun 2022
Stochastic Gradient Methods with Preconditioned Updates
Stochastic Gradient Methods with Preconditioned Updates
Abdurakhmon Sadiev
Aleksandr Beznosikov
Abdulla Jasem Almansoori
Dmitry Kamzolov
R. Tappenden
Martin Takáč
ODL
36
9
0
01 Jun 2022
An Adaptive Incremental Gradient Method With Support for Non-Euclidean
  Norms
An Adaptive Incremental Gradient Method With Support for Non-Euclidean Norms
Binghui Xie
Chen Jin
Kaiwen Zhou
James Cheng
Wei Meng
40
1
0
28 Apr 2022
AUC Maximization in the Era of Big Data and AI: A Survey
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
44
179
0
28 Mar 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
81
17
0
15 Feb 2022
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
Nesterov Accelerated Shuffling Gradient Method for Convex Optimization
Trang H. Tran
K. Scheinberg
Lam M. Nguyen
40
11
0
07 Feb 2022
Distributed Learning With Sparsified Gradient Differences
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
31
15
0
05 Feb 2022
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method
  with Probabilistic Gradient Estimation
PAGE-PG: A Simple and Loopless Variance-Reduced Policy Gradient Method with Probabilistic Gradient Estimation
Matilde Gargiani
Andrea Zanelli
Andrea Martinelli
Tyler H. Summers
John Lygeros
33
14
0
01 Feb 2022
DSAG: A mixed synchronous-asynchronous iterative method for
  straggler-resilient learning
DSAG: A mixed synchronous-asynchronous iterative method for straggler-resilient learning
A. Severinson
E. Rosnes
S. E. Rouayheb
Alexandre Graell i Amat
22
2
0
27 Nov 2021
123
Next