ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.08513
  4. Cited By
Learning Deep Visual Object Models From Noisy Web Data: How to Make it
  Work

Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work

28 February 2017
Nizar Massouh
F. Babiloni
Tatiana Tommasi
Jay Young
Nick Hawes
Barbara Caputo
    VLM
ArXivPDFHTML

Papers citing "Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work"

4 / 4 papers shown
Title
A deep representation for depth images from synthetic data
A deep representation for depth images from synthetic data
Fabio Maria Carlucci
P. Russo
Barbara Caputo
MDE
3DV
23
34
0
30 Sep 2016
The STRANDS Project: Long-Term Autonomy in Everyday Environments
The STRANDS Project: Long-Term Autonomy in Everyday Environments
Nick Hawes
Christopher Burbridge
Ferdian Jovan
Lars Kunze
Bruno Lacerda
...
Jaime Pulido Fentanes
T. Krajník
J. M. Santos
T. Duckett
Marc Hanheide
41
216
0
15 Apr 2016
Learning Rich Features from RGB-D Images for Object Detection and
  Segmentation
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
Saurabh Gupta
Ross B. Girshick
Pablo Arbeláez
Jitendra Malik
ObjD
83
1,560
0
22 Jul 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
174
14,703
0
20 Jun 2014
1