Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.08513
Cited By
Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work
28 February 2017
Nizar Massouh
F. Babiloni
Tatiana Tommasi
Jay Young
Nick Hawes
Barbara Caputo
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Deep Visual Object Models From Noisy Web Data: How to Make it Work"
4 / 4 papers shown
Title
A deep representation for depth images from synthetic data
Fabio Maria Carlucci
P. Russo
Barbara Caputo
MDE
3DV
23
34
0
30 Sep 2016
The STRANDS Project: Long-Term Autonomy in Everyday Environments
Nick Hawes
Christopher Burbridge
Ferdian Jovan
Lars Kunze
Bruno Lacerda
...
Jaime Pulido Fentanes
T. Krajník
J. M. Santos
T. Duckett
Marc Hanheide
41
216
0
15 Apr 2016
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
Saurabh Gupta
Ross B. Girshick
Pablo Arbeláez
Jitendra Malik
ObjD
83
1,560
0
22 Jul 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
174
14,703
0
20 Jun 2014
1