ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.07958
  4. Cited By
Efficient Online Bandit Multiclass Learning with $\tilde{O}(\sqrt{T})$
  Regret
v1v2v3 (latest)

Efficient Online Bandit Multiclass Learning with O~(T)\tilde{O}(\sqrt{T})O~(T​) Regret

25 February 2017
A. Beygelzimer
Francesco Orabona
Chicheng Zhang
ArXiv (abs)PDFHTML

Papers citing "Efficient Online Bandit Multiclass Learning with $\tilde{O}(\sqrt{T})$ Regret"

10 / 10 papers shown
Title
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits
Vasilis Syrgkanis
Haipeng Luo
A. Krishnamurthy
Robert Schapire
138
42
0
01 Jun 2016
Efficient Algorithms for Adversarial Contextual Learning
Efficient Algorithms for Adversarial Contextual Learning
Vasilis Syrgkanis
A. Krishnamurthy
Robert Schapire
143
80
0
08 Feb 2016
BISTRO: An Efficient Relaxation-Based Method for Contextual Bandits
BISTRO: An Efficient Relaxation-Based Method for Contextual Bandits
Alexander Rakhlin
Karthik Sridharan
OffRL
362
72
0
06 Feb 2016
First-order regret bounds for combinatorial semi-bandits
First-order regret bounds for combinatorial semi-bandits
Gergely Neu
194
59
0
23 Feb 2015
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits
Alekh Agarwal
Daniel J. Hsu
Satyen Kale
John Langford
Lihong Li
Robert Schapire
OffRL
410
510
0
04 Feb 2014
Perceptron Mistake Bounds
Perceptron Mistake Bounds
M. Mohri
Afshin Rostamizadeh
48
21
0
01 May 2013
A Generalized Online Mirror Descent with Applications to Classification
  and Regression
A Generalized Online Mirror Descent with Applications to Classification and Regression
Francesco Orabona
K. Crammer
Nicolò Cesa-Bianchi
186
79
0
10 Apr 2013
Relative Loss Bounds for On-line Density Estimation with the Exponential
  Family of Distributions
Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions
Katy S. Azoury
Manfred K. Warmuth
162
324
0
23 Jan 2013
Efficient Optimal Learning for Contextual Bandits
Efficient Optimal Learning for Contextual Bandits
Miroslav Dudík
Daniel J. Hsu
Satyen Kale
Nikos Karampatziakis
John Langford
L. Reyzin
Tong Zhang
194
303
0
13 Jun 2011
Adaptive Bound Optimization for Online Convex Optimization
Adaptive Bound Optimization for Online Convex Optimization
H. B. McMahan
Matthew J. Streeter
ODL
107
391
0
26 Feb 2010
1