Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.07464
Cited By
Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning
24 February 2017
Briland Hitaj
G. Ateniese
Fernando Perez-Cruz
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning"
50 / 354 papers shown
Title
Free-rider Attacks on Model Aggregation in Federated Learning
Yann Fraboni
Richard Vidal
Marco Lorenzi
FedML
14
124
0
21 Jun 2020
Topology-aware Differential Privacy for Decentralized Image Classification
Shangwei Guo
Tianwei Zhang
Guowen Xu
Hanzhou Yu
Tao Xiang
Yang Liu
22
18
0
14 Jun 2020
ARIANN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
T. Ryffel
Pierre Tholoniat
D. Pointcheval
Francis R. Bach
FedML
28
94
0
08 Jun 2020
Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning
Renuga Kanagavelu
Zengxiang Li
J. Samsudin
Yechao Yang
Feng Yang
Rick Siow Mong Goh
Mervyn Cheah
Praewpiraya Wiwatphonthana
K. Akkarajitsakul
Shangguang Wang
FedML
12
88
0
25 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
30
83
0
18 May 2020
Federated Generative Adversarial Learning
Chenyou Fan
Ping Liu
GAN
FedML
34
40
0
07 May 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
73
25
0
27 Apr 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
23
146
0
22 Apr 2020
Local Differential Privacy based Federated Learning for Internet of Things
Yang Zhao
Jun Zhao
Mengmeng Yang
Teng Wang
Ning Wang
Lingjuan Lyu
Dusit Niyato
Kwok-Yan Lam
25
292
0
19 Apr 2020
An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies
David Enthoven
Zaid Al-Ars
FedML
60
50
0
01 Apr 2020
Semi-Federated Learning
Zhikun Chen
Daofeng Li
Mingde Zhao
Sihai Zhang
Jinkang Zhu
FedML
10
18
0
28 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
359
0
24 Mar 2020
Dynamic Backdoor Attacks Against Machine Learning Models
A. Salem
Rui Wen
Michael Backes
Shiqing Ma
Yang Zhang
AAML
45
271
0
07 Mar 2020
Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations
Aditya Golatkar
Alessandro Achille
Stefano Soatto
MU
OOD
22
189
0
05 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
204
436
0
04 Mar 2020
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Hang Su
Bo-Wen Zhang
H. Vincent Poor
FedML
25
11
0
29 Feb 2020
Classifying the classifier: dissecting the weight space of neural networks
Gabriel Eilertsen
Daniel Jonsson
Timo Ropinski
Jonas Unger
Anders Ynnerman
6
53
0
13 Feb 2020
Federated machine learning with Anonymous Random Hybridization (FeARH) on medical records
Jianfei Cui
He Zhu
Hao Deng
Ziwei Chen
Dianbo Liu
23
33
0
25 Dec 2019
Assessing differentially private deep learning with Membership Inference
Daniel Bernau
Philip-William Grassal
J. Robl
Florian Kerschbaum
MIACV
FedML
26
23
0
24 Dec 2019
Asynchronous Federated Learning with Differential Privacy for Edge Intelligence
Yanan Li
Shusen Yang
Xuebin Ren
Cong Zhao
FedML
19
33
0
17 Dec 2019
Federated Learning with Bayesian Differential Privacy
Aleksei Triastcyn
Boi Faltings
FedML
19
174
0
22 Nov 2019
Revocable Federated Learning: A Benchmark of Federated Forest
Yang Liu
Zhuo Ma
Ximeng Liu
Zhuzhu Wang
Siqi Ma
Ken Ren
FedML
MU
27
10
0
08 Nov 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
PPGAN: Privacy-preserving Generative Adversarial Network
Yi Liu
Jialiang Peng
James J. Q. Yu
Yi Wu
32
70
0
04 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
71
969
0
04 Oct 2019
Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis
Jing Ma
Qiuchen Zhang
Jian Lou
Joyce C. Ho
Li Xiong
Xiaoqian Jiang
30
44
0
26 Aug 2019
A Federated Learning Approach for Mobile Packet Classification
Evita Bakopoulou
Bálint Tillman
A. Markopoulou
21
30
0
30 Jul 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
106
2,286
0
04 Jul 2019
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
40
2,160
0
21 Jun 2019
Robust or Private? Adversarial Training Makes Models More Vulnerable to Privacy Attacks
Felipe A. Mejia
Paul Gamble
Z. Hampel-Arias
M. Lomnitz
Nina Lopatina
Lucas Tindall
M. Barrios
SILM
27
18
0
15 Jun 2019
AutoGAN-based Dimension Reduction for Privacy Preservation
Hung Nguyen
Di Zhuang
Pei-Yuan Wu
Jerome Chang
22
33
0
27 Feb 2019
Adversarial Neural Network Inversion via Auxiliary Knowledge Alignment
Ziqi Yang
E. Chang
Zhenkai Liang
MLAU
33
60
0
22 Feb 2019
XONN: XNOR-based Oblivious Deep Neural Network Inference
M. Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin E. Lauter
F. Koushanfar
FedML
GNN
BDL
22
280
0
19 Feb 2019
On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects
Linshan Jiang
Rui Tan
Xin Lou
Guosheng Lin
16
45
0
13 Feb 2019
Contamination Attacks and Mitigation in Multi-Party Machine Learning
Jamie Hayes
O. Ohrimenko
AAML
FedML
19
74
0
08 Jan 2019
Stochastic Distributed Optimization for Machine Learning from Decentralized Features
Yaochen Hu
Di Niu
Jianming Yang
Shengping Zhou
11
5
0
16 Dec 2018
Secure Federated Transfer Learning
Yang Liu
Yan Kang
Chaoping Xing
Tianjian Chen
Qiang Yang
FedML
6
119
0
08 Dec 2018
No Peek: A Survey of private distributed deep learning
Praneeth Vepakomma
Tristan Swedish
Ramesh Raskar
O. Gupta
Abhimanyu Dubey
SyDa
FedML
30
100
0
08 Dec 2018
Three Tools for Practical Differential Privacy
K. V. D. Veen
Ruben Seggers
Peter Bloem
Giorgio Patrini
19
39
0
07 Dec 2018
Differentially Private Data Generative Models
Qingrong Chen
Chong Xiang
Minhui Xue
Bo-wen Li
Nikita Borisov
Dali Kaafar
Haojin Zhu
SyDa
AAML
15
79
0
06 Dec 2018
Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning
Milad Nasr
Reza Shokri
Amir Houmansadr
FedML
MIACV
AAML
13
244
0
03 Dec 2018
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
Peng Kuang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
FedML
28
776
0
03 Dec 2018
Private Model Compression via Knowledge Distillation
Ji Wang
Weidong Bao
Lichao Sun
Xiaomin Zhu
Bokai Cao
Philip S. Yu
FedML
6
116
0
13 Nov 2018
Deep Learning Towards Mobile Applications
Ji Wang
Bokai Cao
Philip S. Yu
Lichao Sun
Weidong Bao
Xiaomin Zhu
HAI
32
98
0
10 Sep 2018
Mitigating Sybils in Federated Learning Poisoning
Clement Fung
Chris J. M. Yoon
Ivan Beschastnikh
AAML
15
497
0
14 Aug 2018
Performing Co-Membership Attacks Against Deep Generative Models
Kin Sum Liu
Chaowei Xiao
Bo-wen Li
Jie Gao
AAML
MIACV
21
58
0
24 May 2018
Towards Robust and Privacy-preserving Text Representations
Yitong Li
Timothy Baldwin
Trevor Cohn
12
165
0
16 May 2018
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
359
37
0
15 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
81
1,455
0
10 May 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
45
1,306
0
12 Mar 2018
Previous
1
2
3
4
5
6
7
8
Next