Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.07254
Cited By
Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
23 February 2017
Simon Fischer
Ingo Steinwart
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm"
50 / 105 papers shown
Title
Sobolev norm inconsistency of kernel interpolation
Yunfei Yang
34
0
0
29 Apr 2025
On the Saturation Effects of Spectral Algorithms in Large Dimensions
Weihao Lu
Haobo Zhang
Yicheng Li
Q. Lin
44
1
0
01 Mar 2025
Nested Expectations with Kernel Quadrature
Zonghao Chen
Masha Naslidnyk
F. Briol
36
0
0
25 Feb 2025
On strong posterior contraction rates for Besov-Laplace priors in the white noise model
Emanuele Dolera
Stefano Favaro
Matteo Giordano
26
0
0
11 Nov 2024
A Simple Model of Inference Scaling Laws
Noam Levi
LRM
32
6
0
21 Oct 2024
Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds
Weichun Xia
Jiaxin Jiang
Lei Shi
26
0
0
18 Oct 2024
Laplace Transform Based Low-Complexity Learning of Continuous Markov Semigroups
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
P. Novelli
Massimiliano Pontil
36
0
0
18 Oct 2024
Which Spaces can be Embedded in
L
p
L_p
L
p
-type Reproducing Kernel Banach Space? A Characterization via Metric Entropy
Yiping Lu
Daozhe Lin
Qiang Du
39
0
0
14 Oct 2024
On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory
Guhan Chen
Yicheng Li
Qian Lin
AAML
38
1
0
08 Oct 2024
Distributed Learning with Discretely Observed Functional Data
Jiading Liu
Lei Shi
20
0
0
03 Oct 2024
Gaussian kernel expansion with basis functions uniformly bounded in
L
∞
\mathcal{L}_{\infty}
L
∞
M. Bisiacco
G. Pillonetto
20
0
0
02 Oct 2024
On the Pinsker bound of inner product kernel regression in large dimensions
Weihao Lu
Jialin Ding
Haobo Zhang
Qian Lin
57
0
0
02 Sep 2024
Improving Adaptivity via Over-Parameterization in Sequence Models
Yicheng Li
Qian Lin
31
1
0
02 Sep 2024
Operator World Models for Reinforcement Learning
P. Novelli
Marco Prattico
Massimiliano Pontil
C. Ciliberto
OffRL
42
0
0
28 Jun 2024
Optimal Rates for Vector-Valued Spectral Regularization Learning Algorithms
Dimitri Meunier
Zikai Shen
Mattes Mollenhauer
Arthur Gretton
Zhu Li
51
5
0
23 May 2024
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
Vladimir Kostic
Karim Lounici
Helene Halconruy
Timothée Devergne
Massimiliano Pontil
DiffM
40
4
0
21 May 2024
On the Saturation Effect of Kernel Ridge Regression
Yicheng Li
Haobo Zhang
Qian Lin
25
19
0
15 May 2024
The phase diagram of kernel interpolation in large dimensions
Haobo Zhang
Weihao Lu
Qian Lin
60
5
0
19 Apr 2024
On Safety in Safe Bayesian Optimization
Christian Fiedler
Johanna Menn
Lukas Kreisköther
Sebastian Trimpe
33
9
0
19 Mar 2024
On the Approximation of Kernel functions
Paul Dommel
Alois Pichler
31
0
0
11 Mar 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
29
0
0
07 Mar 2024
Spectral Algorithms on Manifolds through Diffusion
Weichun Xia
Lei Shi
23
1
0
06 Mar 2024
Smoothness Adaptive Hypothesis Transfer Learning
Haotian Lin
M. Reimherr
25
6
0
22 Feb 2024
Practical Kernel Tests of Conditional Independence
Roman Pogodin
Antonin Schrab
Yazhe Li
Danica J. Sutherland
Arthur Gretton
38
5
0
20 Feb 2024
A Bound on the Maximal Marginal Degrees of Freedom
Paul Dommel
19
1
0
20 Feb 2024
The Optimality of Kernel Classifiers in Sobolev Space
Jianfa Lai
Zhifan Li
Dongming Huang
Qian Lin
27
1
0
02 Feb 2024
Spectrally Transformed Kernel Regression
Runtian Zhai
Rattana Pukdee
Roger Jin
Maria-Florina Balcan
Pradeep Ravikumar
BDL
28
2
0
01 Feb 2024
Generalization Error Curves for Analytic Spectral Algorithms under Power-law Decay
Yicheng Li
Weiye Gan
Zuoqiang Shi
Qian Lin
41
5
0
03 Jan 2024
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai
Ohad Shamir
35
15
0
26 Dec 2023
Consistent Long-Term Forecasting of Ergodic Dynamical Systems
Prune Inzerilli
Vladimir Kostic
Karim Lounici
P. Novelli
Massimiliano Pontil
18
4
0
20 Dec 2023
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
39
6
0
12 Dec 2023
Adaptive Parameter Selection for Kernel Ridge Regression
Shao-Bo Lin
11
3
0
10 Dec 2023
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
Ernesto De Vito
Lorenzo Rosasco
27
3
0
22 Nov 2023
On the Asymptotic Learning Curves of Kernel Ridge Regression under Power-law Decay
Yicheng Li
Hao Zhang
Qian Lin
35
12
0
23 Sep 2023
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos
Di Wang
Xiaotong Liu
Shao-Bo Lin
Ding-Xuan Zhou
33
0
0
08 Sep 2023
Kernel Single Proxy Control for Deterministic Confounding
Liyuan Xu
Arthur Gretton
CML
26
2
0
08 Aug 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
27
6
0
20 Jul 2023
Estimating Koopman operators with sketching to provably learn large scale dynamical systems
Giacomo Meanti
Antoine Chatalic
Vladimir Kostic
P. Novelli
Massimiliano Pontil
Lorenzo Rosasco
21
9
0
07 Jun 2023
How many samples are needed to leverage smoothness?
Vivien A. Cabannes
Stefano Vigogna
8
2
0
25 May 2023
On the Optimality of Misspecified Kernel Ridge Regression
Haobo Zhang
Yicheng Li
Weihao Lu
Qian Lin
47
13
0
12 May 2023
Supervised learning with probabilistic morphisms and kernel mean embeddings
H. Lê
GAN
25
1
0
10 May 2023
On the Eigenvalue Decay Rates of a Class of Neural-Network Related Kernel Functions Defined on General Domains
Yicheng Li
Zixiong Yu
Y. Cotronis
Qian Lin
55
13
0
04 May 2023
Convergence and error analysis of PINNs
Nathan Doumèche
Gérard Biau
D. Boyer
PINN
AI4CE
45
17
0
02 May 2023
Toward
L
∞
L_\infty
L
∞
-recovery of Nonlinear Functions: A Polynomial Sample Complexity Bound for Gaussian Random Fields
Kefan Dong
Tengyu Ma
43
4
0
29 Apr 2023
Augmented balancing weights as linear regression
David Bruns-Smith
O. Dukes
Avi Feller
Elizabeth L. Ogburn
27
10
0
27 Apr 2023
Kernel interpolation generalizes poorly
Yicheng Li
Haobo Zhang
Qian Lin
42
11
0
28 Mar 2023
On the Connection between
L
p
L_p
L
p
and Risk Consistency and its Implications on Regularized Kernel Methods
Hannes Köhler
9
1
0
27 Mar 2023
On the Optimality of Misspecified Spectral Algorithms
Hao Zhang
Yicheng Li
Qian Lin
23
15
0
27 Mar 2023
Sketching with Spherical Designs for Noisy Data Fitting on Spheres
Shao-Bo Lin
Di Wang
Ding-Xuan Zhou
21
2
0
08 Mar 2023
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels
T. Ahmad
Luc Brogat-Motte
Pierre Laforgue
Florence dÁlché-Buc
BDL
33
6
0
20 Feb 2023
1
2
3
Next