Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1702.05575
Cited By
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
18 February 2017
Yuchen Zhang
Percy Liang
Moses Charikar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics"
23 / 23 papers shown
Title
Learning Noisy Halfspaces with a Margin: Massart is No Harder than Random
Gautam Chandrasekaran
Vasilis Kontonis
Konstantinos Stavropoulos
Kevin Tian
109
1
0
20 Jan 2025
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
345
1
0
08 Oct 2024
Quantum Langevin Dynamics for Optimization
Zherui Chen
Yuchen Lu
Hao Wang
Yizhou Liu
Tongyang Li
AI4CE
66
11
0
27 Nov 2023
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
91
44
0
23 Oct 2019
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
64
518
0
13 Feb 2017
A Comprehensive Study of Deep Bidirectional LSTM RNNs for Acoustic Modeling in Speech Recognition
Albert Zeyer
P. Doetsch
P. Voigtlaender
Ralf Schluter
Hermann Ney
46
169
0
22 Jun 2016
Efficient approaches for escaping higher order saddle points in non-convex optimization
Anima Anandkumar
Rong Ge
25
143
0
18 Feb 2016
Gradient Descent Converges to Minimizers
Jason D. Lee
Max Simchowitz
Michael I. Jordan
Benjamin Recht
55
211
0
16 Feb 2016
Guarantees in Wasserstein Distance for the Langevin Monte Carlo Algorithm
Thomas Bonis
19
2
0
08 Feb 2016
Neural GPUs Learn Algorithms
Lukasz Kaiser
Ilya Sutskever
69
369
0
25 Nov 2015
Adding Gradient Noise Improves Learning for Very Deep Networks
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Lukasz Kaiser
Karol Kurach
James Martens
AI4CE
ODL
44
544
0
21 Nov 2015
Neural Random-Access Machines
Karol Kurach
Marcin Andrychowicz
Ilya Sutskever
OOD
BDL
60
156
0
19 Nov 2015
Neural Programmer: Inducing Latent Programs with Gradient Descent
Arvind Neelakantan
Quoc V. Le
Ilya Sutskever
ODL
59
263
0
16 Nov 2015
On the Quality of the Initial Basin in Overspecified Neural Networks
Itay Safran
Ohad Shamir
56
127
0
13 Nov 2015
Efficient Learning of Linear Separators under Bounded Noise
Pranjal Awasthi
Maria-Florina Balcan
Nika Haghtalab
Ruth Urner
36
94
0
12 Mar 2015
Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition
Rong Ge
Furong Huang
Chi Jin
Yang Yuan
125
1,056
0
06 Mar 2015
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
49
231
0
01 Sep 2014
Optimal rates for zero-order convex optimization: the power of two function evaluations
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
Andre Wibisono
59
480
0
07 Dec 2013
Optimal computational and statistical rates of convergence for sparse nonconvex learning problems
Zhaoran Wang
Han Liu
Tong Zhang
85
175
0
20 Jun 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
194
516
0
10 May 2013
Advances in Optimizing Recurrent Networks
Yoshua Bengio
Nicolas Boulanger-Lewandowski
Razvan Pascanu
ODL
72
522
0
04 Dec 2012
On the difficulty of training Recurrent Neural Networks
Razvan Pascanu
Tomas Mikolov
Yoshua Bengio
ODL
134
5,318
0
21 Nov 2012
1