ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.07808
  4. Cited By
Linear convergence of SDCA in statistical estimation

Linear convergence of SDCA in statistical estimation

26 January 2017
Chao Qu
Huan Xu
ArXivPDFHTML

Papers citing "Linear convergence of SDCA in statistical estimation"

26 / 26 papers shown
Title
SAGA and Restricted Strong Convexity
SAGA and Restricted Strong Convexity
Chao Qu
Yan Li
Huan Xu
37
5
0
19 Feb 2017
Linear Convergence of SVRG in Statistical Estimation
Linear Convergence of SVRG in Statistical Estimation
Chao Qu
Yan Li
Huan Xu
49
11
0
07 Nov 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
242
1,216
0
16 Aug 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
81
54
0
23 May 2016
Nonconvex Sparse Learning via Stochastic Optimization with Progressive
  Variance Reduction
Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction
Xingguo Li
R. Arora
Han Liu
Jarvis Haupt
T. Zhao
41
68
0
09 May 2016
Primal-Dual Rates and Certificates
Primal-Dual Rates and Certificates
Celestine Mendler-Dünner
Simone Forte
Martin Takáč
Martin Jaggi
73
60
0
16 Feb 2016
SDCA without Duality, Regularization, and Individual Convexity
SDCA without Duality, Regularization, and Individual Convexity
Shai Shalev-Shwartz
39
104
0
04 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
72
172
0
30 Dec 2015
Stop Wasting My Gradients: Practical SVRG
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
60
134
0
05 Nov 2015
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Zeyuan Allen-Zhu
Yang Yuan
69
196
0
05 Jun 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
103
97
0
27 Feb 2015
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
61
131
0
27 Dec 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
76
353
0
04 Sep 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
128
1,823
0
01 Jul 2014
A distributed block coordinate descent method for training $l_1$
  regularized linear classifiers
A distributed block coordinate descent method for training l1l_1l1​ regularized linear classifiers
D. Mahajan
S. Keerthi
S. Sundararajan
132
35
0
18 May 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
147
738
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to
  Large-Scale Machine Learning
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
144
318
0
18 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
289
1,246
0
10 Sep 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized
  Loss Minimization
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
91
463
0
10 Sep 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic
  theory for local optima
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
236
516
0
10 May 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss
  Minimization
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
153
1,032
0
10 Sep 2012
A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
Lin Xiao
Tong Zhang
70
146
0
14 Mar 2012
High-dimensional regression with noisy and missing data: Provable
  guarantees with nonconvexity
High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
Po-Ling Loh
Martin J. Wainwright
106
561
0
16 Sep 2011
A Unified Framework for High-Dimensional Analysis of M-Estimators with
  Decomposable Regularizers
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
360
1,378
0
13 Oct 2010
Nearly unbiased variable selection under minimax concave penalty
Nearly unbiased variable selection under minimax concave penalty
Cun-Hui Zhang
305
3,557
0
25 Feb 2010
On the conditions used to prove oracle results for the Lasso
On the conditions used to prove oracle results for the Lasso
Sara van de Geer
Peter Buhlmann
237
731
0
05 Oct 2009
1