Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1701.07808
Cited By
Linear convergence of SDCA in statistical estimation
26 January 2017
Chao Qu
Huan Xu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Linear convergence of SDCA in statistical estimation"
26 / 26 papers shown
Title
SAGA and Restricted Strong Convexity
Chao Qu
Yan Li
Huan Xu
37
5
0
19 Feb 2017
Linear Convergence of SVRG in Statistical Estimation
Chao Qu
Yan Li
Huan Xu
49
11
0
07 Nov 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark Schmidt
242
1,216
0
16 Aug 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
81
54
0
23 May 2016
Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction
Xingguo Li
R. Arora
Han Liu
Jarvis Haupt
T. Zhao
41
68
0
09 May 2016
Primal-Dual Rates and Certificates
Celestine Mendler-Dünner
Simone Forte
Martin Takáč
Martin Jaggi
73
60
0
16 Feb 2016
SDCA without Duality, Regularization, and Individual Convexity
Shai Shalev-Shwartz
39
104
0
04 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
72
172
0
30 Dec 2015
Stop Wasting My Gradients: Practical SVRG
Reza Babanezhad
Mohamed Osama Ahmed
Alim Virani
Mark Schmidt
Jakub Konecný
Scott Sallinen
60
134
0
05 Nov 2015
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives
Zeyuan Allen-Zhu
Yang Yuan
69
196
0
05 Jun 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
103
97
0
27 Feb 2015
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
Zheng Qu
Peter Richtárik
61
131
0
27 Dec 2014
Communication-Efficient Distributed Dual Coordinate Ascent
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
76
353
0
04 Sep 2014
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
128
1,823
0
01 Jul 2014
A distributed block coordinate descent method for training
l
1
l_1
l
1
regularized linear classifiers
D. Mahajan
S. Keerthi
S. Sundararajan
132
35
0
18 May 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
147
738
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
144
318
0
18 Feb 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
289
1,246
0
10 Sep 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
91
463
0
10 Sep 2013
Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima
Po-Ling Loh
Martin J. Wainwright
236
516
0
10 May 2013
Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
153
1,032
0
10 Sep 2012
A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem
Lin Xiao
Tong Zhang
70
146
0
14 Mar 2012
High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
Po-Ling Loh
Martin J. Wainwright
106
561
0
16 Sep 2011
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
360
1,378
0
13 Oct 2010
Nearly unbiased variable selection under minimax concave penalty
Cun-Hui Zhang
305
3,557
0
25 Feb 2010
On the conditions used to prove oracle results for the Lasso
Sara van de Geer
Peter Buhlmann
237
731
0
05 Oct 2009
1