ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.07570
  4. Cited By
Dynamic Regret of Strongly Adaptive Methods

Dynamic Regret of Strongly Adaptive Methods

26 January 2017
Lijun Zhang
Tianbao Yang
Rong Jin
Zhi Zhou
    ODL
ArXivPDFHTML

Papers citing "Dynamic Regret of Strongly Adaptive Methods"

10 / 10 papers shown
Title
Improved Strongly Adaptive Online Learning using Coin Betting
Improved Strongly Adaptive Online Learning using Coin Betting
Kwang-Sung Jun
Francesco Orabona
Rebecca Willett
S. Wright
167
82
0
14 Oct 2016
Improved Dynamic Regret for Non-degenerate Functions
Improved Dynamic Regret for Non-degenerate Functions
Lijun Zhang
Tianbao Yang
Jinfeng Yi
Jing Rong
Zhi Zhou
226
127
0
13 Aug 2016
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online
  Learning with True and Noisy Gradient
Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient
Tianbao Yang
Lijun Zhang
Rong Jin
Jinfeng Yi
57
155
0
16 May 2016
Strongly Adaptive Online Learning
Strongly Adaptive Online Learning
Amit Daniely
Alon Gonen
Shai Shalev-Shwartz
ODL
165
178
0
25 Feb 2015
Non-stationary Stochastic Optimization
Non-stationary Stochastic Optimization
Omar Besbes
Y. Gur
A. Zeevi
178
433
0
20 Jul 2013
Dynamical Models and Tracking Regret in Online Convex Programming
Dynamical Models and Tracking Regret in Online Convex Programming
Eric C. Hall
Rebecca Willett
98
116
0
07 Jan 2013
Mirror Descent Meets Fixed Share (and feels no regret)
Mirror Descent Meets Fixed Share (and feels no regret)
Nicolò Cesa-Bianchi
Pierre Gaillard
Gabor Lugosi
Gilles Stoltz
199
99
0
15 Feb 2012
Efficient Tracking of Large Classes of Experts
Efficient Tracking of Large Classes of Experts
András Gyorgy
Tamás Linder
Gábor Lugosi
107
75
0
12 Oct 2011
A Stochastic View of Optimal Regret through Minimax Duality
A Stochastic View of Optimal Regret through Minimax Duality
Jacob D. Abernethy
Alekh Agarwal
Peter L. Bartlett
Alexander Rakhlin
85
95
0
30 Mar 2009
Sparse Online Learning via Truncated Gradient
Sparse Online Learning via Truncated Gradient
John Langford
Lihong Li
Tong Zhang
153
486
0
28 Jun 2008
1