ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.01293
  4. Cited By
OpenML: An R Package to Connect to the Machine Learning Platform OpenML

OpenML: An R Package to Connect to the Machine Learning Platform OpenML

5 January 2017
Giuseppe Casalicchio
Jakob Bossek
Michel Lang
Dominik Kirchhoff
P. Kerschke
B. Hofner
H. Seibold
Joaquin Vanschoren
B. Bischl
    VLM
    LRM
ArXivPDFHTML

Papers citing "OpenML: An R Package to Connect to the Machine Learning Platform OpenML"

9 / 9 papers shown
Title
Post-Selection Confidence Bounds for Prediction Performance
Post-Selection Confidence Bounds for Prediction Performance
Pascal Rink
W. Brannath
27
1
0
24 Oct 2022
On the role of benchmarking data sets and simulations in method
  comparison studies
On the role of benchmarking data sets and simulations in method comparison studies
Sarah Friedrich
T. Friede
32
24
0
02 Aug 2022
Test for non-negligible adverse shifts
Test for non-negligible adverse shifts
Vathy M. Kamulete
15
3
0
07 Jul 2021
Model-agnostic Feature Importance and Effects with Dependent Features --
  A Conditional Subgroup Approach
Model-agnostic Feature Importance and Effects with Dependent Features -- A Conditional Subgroup Approach
Christoph Molnar
Gunnar Konig
B. Bischl
Giuseppe Casalicchio
31
77
0
08 Jun 2020
Large-scale benchmark study of survival prediction methods using
  multi-omics data
Large-scale benchmark study of survival prediction methods using multi-omics data
Moritz Herrmann
Philipp Probst
R. Hornung
V. Jurinovic
A. Boulesteix
14
77
0
07 Mar 2020
OpenML-Python: an extensible Python API for OpenML
OpenML-Python: an extensible Python API for OpenML
Matthias Feurer
Jan N. van Rijn
Arlind Kadra
Pieter Gijsbers
Neeratyoy Mallik
Sahithya Ravi
Andreas Müller
Joaquin Vanschoren
Frank Hutter
ELM
GP
25
87
0
06 Nov 2019
Hyperparameters and Tuning Strategies for Random Forest
Hyperparameters and Tuning Strategies for Random Forest
Philipp Probst
Marvin N. Wright
A. Boulesteix
33
1,351
0
10 Apr 2018
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
Philipp Probst
B. Bischl
A. Boulesteix
13
600
0
26 Feb 2018
OpenML Benchmarking Suites
OpenML Benchmarking Suites
B. Bischl
Giuseppe Casalicchio
Matthias Feurer
Pieter Gijsbers
Frank Hutter
Michel Lang
R. G. Mantovani
Jan N. van Rijn
Joaquin Vanschoren
VLM
ELM
41
151
0
11 Aug 2017
1