ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1701.00939
  4. Cited By
Dense Associative Memory is Robust to Adversarial Inputs

Dense Associative Memory is Robust to Adversarial Inputs

4 January 2017
Dmitry Krotov
J. Hopfield
    AAML
ArXivPDFHTML

Papers citing "Dense Associative Memory is Robust to Adversarial Inputs"

22 / 22 papers shown
Title
Neural Learning Rules from Associative Networks Theory
Neural Learning Rules from Associative Networks Theory
Daniele Lotito
45
0
0
11 Mar 2025
Sequential Learning in the Dense Associative Memory
Sequential Learning in the Dense Associative Memory
Hayden McAlister
Anthony Robins
Lech Szymanski
CLL
216
1
0
24 Sep 2024
Long Sequence Hopfield Memory
Long Sequence Hopfield Memory
Hamza Tahir Chaudhry
Jacob A. Zavatone-Veth
Dmitry Krotov
Cengiz Pehlevan
51
18
0
07 Jun 2023
iMixer: hierarchical Hopfield network implies an invertible, implicit
  and iterative MLP-Mixer
iMixer: hierarchical Hopfield network implies an invertible, implicit and iterative MLP-Mixer
Toshihiro Ota
Masato Taki
37
2
0
25 Apr 2023
Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
  Networks
Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks
Fenglei Fan
Yingxin Li
Hanchuan Peng
T. Zeng
Fei Wang
25
5
0
23 Jan 2023
On the Relationship Between Variational Inference and Auto-Associative
  Memory
On the Relationship Between Variational Inference and Auto-Associative Memory
Louis Annabi
Alexandre Pitti
M. Quoy
BDL
35
5
0
14 Oct 2022
Sequence Learning Using Equilibrium Propagation
Sequence Learning Using Equilibrium Propagation
Malyaban Bal
Abhronil Sengupta
35
9
0
14 Sep 2022
A Theory of Natural Intelligence
A Theory of Natural Intelligence
C. Malsburg
Thilo Stadelmann
Benjamin Grewe
17
2
0
22 Apr 2022
Fine-tuning Image Transformers using Learnable Memory
Fine-tuning Image Transformers using Learnable Memory
Mark Sandler
A. Zhmoginov
Max Vladymyrov
Andrew Jackson
ViT
34
47
0
29 Mar 2022
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
36
236
0
01 Aug 2021
A brain basis of dynamical intelligence for AI and computational
  neuroscience
A brain basis of dynamical intelligence for AI and computational neuroscience
J. Monaco
Kanaka Rajan
Grace M. Hwang
AI4CE
26
6
0
15 May 2021
On the Adversarial Robustness of Vision Transformers
On the Adversarial Robustness of Vision Transformers
Rulin Shao
Zhouxing Shi
Jinfeng Yi
Pin-Yu Chen
Cho-Jui Hsieh
ViT
33
138
0
29 Mar 2021
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
29
73
0
07 Aug 2020
Modern Hopfield Networks and Attention for Immune Repertoire
  Classification
Modern Hopfield Networks and Attention for Immune Repertoire Classification
Michael Widrich
Bernhard Schafl
Hubert Ramsauer
Milena Pavlović
Lukas Gruber
...
Johannes Brandstetter
G. K. Sandve
Victor Greiff
Sepp Hochreiter
Günter Klambauer
193
117
0
16 Jul 2020
Hopfield Networks is All You Need
Hopfield Networks is All You Need
Hubert Ramsauer
Bernhard Schafl
Johannes Lehner
Philipp Seidl
Michael Widrich
...
David P. Kreil
Michael K Kopp
Günter Klambauer
Johannes Brandstetter
Sepp Hochreiter
24
415
0
16 Jul 2020
Neural networks with redundant representation: detecting the
  undetectable
Neural networks with redundant representation: detecting the undetectable
E. Agliari
Francesco Alemanno
Adriano Barra
M. Centonze
A. Fachechi
13
31
0
28 Nov 2019
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural
  Networks against Adversarial Malware Samples
HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples
Deqiang Li
Ramesh Baral
Tao Li
Han Wang
Qianmu Li
Shouhuai Xu
AAML
28
21
0
18 Sep 2018
Universal Approximation with Quadratic Deep Networks
Universal Approximation with Quadratic Deep Networks
Fenglei Fan
Jinjun Xiong
Ge Wang
PINN
36
78
0
31 Jul 2018
Motivating the Rules of the Game for Adversarial Example Research
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Unsupervised Learning by Competing Hidden Units
Unsupervised Learning by Competing Hidden Units
Dmitry Krotov
J. Hopfield
SSL
9
166
0
26 Jun 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using
  JPEG Compression
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
45
225
0
19 Feb 2018
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
317
5,847
0
08 Jul 2016
1