ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.07471
  4. Cited By
Efficient Bayesian computation by proximal Markov chain Monte Carlo:
  when Langevin meets Moreau

Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau

22 December 2016
Alain Durmus
Eric Moulines
Marcelo Pereyra
ArXivPDFHTML

Papers citing "Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau"

40 / 40 papers shown
Title
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Conformal Bounds on Full-Reference Image Quality for Imaging Inverse Problems
Jeffrey Wen
Rizwan Ahmad
Philip Schniter
29
0
0
14 May 2025
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
60
0
0
03 Feb 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
71
2
0
08 Jan 2025
Task-Driven Uncertainty Quantification in Inverse Problems via Conformal
  Prediction
Task-Driven Uncertainty Quantification in Inverse Problems via Conformal Prediction
Jeffrey Wen
Rizwan Ahmad
Philip Schniter
41
2
0
28 May 2024
Convergence rates of particle approximation of forward-backward
  splitting algorithm for granular medium equations
Convergence rates of particle approximation of forward-backward splitting algorithm for granular medium equations
Matej Benko
Iwona Chlebicka
Jorgen Endal
B. Miasojedow
32
1
0
28 May 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
76
1
0
08 Apr 2024
Proximal Oracles for Optimization and Sampling
Proximal Oracles for Optimization and Sampling
Jiaming Liang
Yongxin Chen
44
3
0
02 Apr 2024
Distributed Markov Chain Monte Carlo Sampling based on the Alternating
  Direction Method of Multipliers
Distributed Markov Chain Monte Carlo Sampling based on the Alternating Direction Method of Multipliers
Alexandros E. Tzikas
Licio Romao
Mert Pilanci
Alessandro Abate
Mykel J. Kochenderfer
34
0
0
29 Jan 2024
Accelerating Neural Field Training via Soft Mining
Accelerating Neural Field Training via Soft Mining
Shakiba Kheradmand
Daniel Rebain
Gopal Sharma
Hossam N. Isack
Abhishek Kar
Andrea Tagliasacchi
Kwang Moo Yi
45
4
0
29 Nov 2023
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Marien Renaud
Jiaming Liu
Valentin De Bortoli
Andrés Almansa
Ulugbek S. Kamilov
48
5
0
05 Oct 2023
Moreau-Yoshida Variational Transport: A General Framework For Solving
  Regularized Distributional Optimization Problems
Moreau-Yoshida Variational Transport: A General Framework For Solving Regularized Distributional Optimization Problems
Dai Hai Nguyen
Tetsuya Sakurai
29
1
0
31 Jul 2023
Non-convex sampling for a mixture of locally smooth potentials
Non-convex sampling for a mixture of locally smooth potentials
D. Nguyen
33
0
0
31 Jan 2023
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity --
  the Strongly Convex Case
Kinetic Langevin MCMC Sampling Without Gradient Lipschitz Continuity -- the Strongly Convex Case
Tim Johnston
Iosif Lytras
Sotirios Sabanis
38
8
0
19 Jan 2023
Stable Deep MRI Reconstruction using Generative Priors
Stable Deep MRI Reconstruction using Generative Priors
Martin Zach
Florian Knoll
Thomas Pock
OOD
MedIm
DiffM
33
17
0
25 Oct 2022
Resolving the Mixing Time of the Langevin Algorithm to its Stationary
  Distribution for Log-Concave Sampling
Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling
Jason M. Altschuler
Kunal Talwar
38
24
0
16 Oct 2022
Efficient Bayes Inference in Neural Networks through Adaptive Importance
  Sampling
Efficient Bayes Inference in Neural Networks through Adaptive Importance Sampling
Yunshi Huang
Émilie Chouzenoux
Victor Elvira
J. Pesquet
BDL
34
5
0
03 Oct 2022
Nesterov smoothing for sampling without smoothness
Nesterov smoothing for sampling without smoothness
JiaoJiao Fan
Bo Yuan
Jiaming Liang
Yongxin Chen
37
2
0
15 Aug 2022
Convergence of Stein Variational Gradient Descent under a Weaker
  Smoothness Condition
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
26
19
0
01 Jun 2022
Optimized Population Monte Carlo
Optimized Population Monte Carlo
Victor Elvira
Émilie Chouzenoux
34
23
0
14 Apr 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive
  Agents
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
38
25
0
20 Mar 2022
A Proximal Algorithm for Sampling
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
30
17
0
28 Feb 2022
On Maximum-a-Posteriori estimation with Plug & Play priors and
  stochastic gradient descent
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
25
25
0
16 Jan 2022
Unadjusted Langevin algorithm for sampling a mixture of weakly smooth potentials
D. Nguyen
21
5
0
17 Dec 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
47
26
0
09 Oct 2021
Fast Scalable Image Restoration using Total Variation Priors and
  Expectation Propagation
Fast Scalable Image Restoration using Total Variation Priors and Expectation Propagation
D. Yao
S. Mclaughlin
Y. Altmann
13
6
0
04 Oct 2021
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high
  dimension
Asymptotic bias of inexact Markov Chain Monte Carlo methods in high dimension
Alain Durmus
A. Eberle
30
19
0
02 Aug 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
49
19
0
23 Jun 2021
A Convergence Theory for SVGD in the Population Limit under Talagrand's
  Inequality T1
A Convergence Theory for SVGD in the Population Limit under Talagrand's Inequality T1
Adil Salim
Lukang Sun
Peter Richtárik
26
20
0
06 Jun 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
26
109
0
08 Mar 2021
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint
  Sampling Method
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
18
33
0
06 Nov 2020
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin
  Algorithm
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm
Adil Salim
Peter Richtárik
22
38
0
16 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
11
75
0
27 May 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
19
65
0
11 Feb 2020
Maximum likelihood estimation of regularisation parameters in
  high-dimensional inverse problems: an empirical Bayesian approach. Part I:
  Methodology and Experiments
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments
A. F. Vidal
Valentin De Bortoli
Marcelo Pereyra
Alain Durmus
24
7
0
26 Nov 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
15
43
0
30 May 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
24
37
0
23 May 2019
Asymptotically exact data augmentation: models, properties and
  algorithms
Asymptotically exact data augmentation: models, properties and algorithms
Maxime Vono
N. Dobigeon
P. Chainais
32
27
0
15 Feb 2019
A Primer on PAC-Bayesian Learning
A Primer on PAC-Bayesian Learning
Benjamin Guedj
15
221
0
16 Jan 2019
Split-and-augmented Gibbs sampler - Application to large-scale inference
  problems
Split-and-augmented Gibbs sampler - Application to large-scale inference problems
Maxime Vono
N. Dobigeon
P. Chainais
19
50
0
16 Apr 2018
Mirrored Langevin Dynamics
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
V. Cevher
16
81
0
27 Feb 2018
1