Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.06246
Cited By
Corralling a Band of Bandit Algorithms
19 December 2016
Alekh Agarwal
Haipeng Luo
Behnam Neyshabur
Robert Schapire
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Corralling a Band of Bandit Algorithms"
35 / 35 papers shown
Title
Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning
Michail Kalntis
Georgios Iosifidis
Fernando A. Kuipers
39
5
0
31 Dec 2024
Causal Bandits: The Pareto Optimal Frontier of Adaptivity, a Reduction to Linear Bandits, and Limitations around Unknown Marginals
Ziyi Liu
Idan Attias
Daniel M. Roy
CML
29
0
0
01 Jul 2024
Anytime Model Selection in Linear Bandits
Parnian Kassraie
N. Emmenegger
Andreas Krause
Aldo Pacchiano
46
2
0
24 Jul 2023
Improved Regret Bounds for Online Kernel Selection under Bandit Feedback
Junfan Li
Shizhong Liao
17
1
0
09 Mar 2023
A Blackbox Approach to Best of Both Worlds in Bandits and Beyond
Christoph Dann
Chen-Yu Wei
Julian Zimmert
24
22
0
20 Feb 2023
Estimating Optimal Policy Value in General Linear Contextual Bandits
Jonathan Lee
Weihao Kong
Aldo Pacchiano
Vidya Muthukumar
Emma Brunskill
23
0
0
19 Feb 2023
Banker Online Mirror Descent: A Universal Approach for Delayed Online Bandit Learning
Jiatai Huang
Yan Dai
Longbo Huang
11
6
0
25 Jan 2023
Scalable Representation Learning in Linear Contextual Bandits with Constant Regret Guarantees
Andrea Tirinzoni
Matteo Papini
Ahmed Touati
A. Lazaric
Matteo Pirotta
28
4
0
24 Oct 2022
Exploration in Linear Bandits with Rich Action Sets and its Implications for Inference
Debangshu Banerjee
Avishek Ghosh
Sayak Ray Chowdhury
Aditya Gopalan
22
9
0
23 Jul 2022
Best of Both Worlds Model Selection
Aldo Pacchiano
Christoph Dann
Claudio Gentile
26
10
0
29 Jun 2022
Adversarial Bandits against Arbitrary Strategies
Jung-hun Kim
Se-Young Yun
46
0
0
30 May 2022
Breaking the
T
\sqrt{T}
T
Barrier: Instance-Independent Logarithmic Regret in Stochastic Contextual Linear Bandits
Avishek Ghosh
Abishek Sankararaman
27
3
0
19 May 2022
Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions
Jiafan He
Dongruo Zhou
Tong Zhang
Quanquan Gu
66
46
0
13 May 2022
Corralling a Larger Band of Bandits: A Case Study on Switching Regret for Linear Bandits
Haipeng Luo
Mengxiao Zhang
Peng Zhao
Zhi-Hua Zhou
28
17
0
12 Feb 2022
Uncoupled Bandit Learning towards Rationalizability: Benchmarks, Barriers, and Algorithms
Jibang Wu
Haifeng Xu
Fan Yao
22
1
0
10 Nov 2021
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
53
42
0
09 Nov 2021
Decentralized Cooperative Reinforcement Learning with Hierarchical Information Structure
Hsu Kao
Chen-Yu Wei
V. Subramanian
15
12
0
01 Nov 2021
On component interactions in two-stage recommender systems
Jiri Hron
K. Krauth
Michael I. Jordan
Niki Kilbertus
CML
LRM
40
31
0
28 Jun 2021
Multi-armed Bandit Algorithms on System-on-Chip: Go Frequentist or Bayesian?
S. Santosh
S. Darak
14
0
0
05 Jun 2021
Leveraging Good Representations in Linear Contextual Bandits
Matteo Papini
Andrea Tirinzoni
Marcello Restelli
A. Lazaric
Matteo Pirotta
17
26
0
08 Apr 2021
A Simple Approach for Non-stationary Linear Bandits
Peng Zhao
Lijun Zhang
Yuan Jiang
Zhi-Hua Zhou
31
81
0
09 Mar 2021
Policy Optimization as Online Learning with Mediator Feedback
Alberto Maria Metelli
Matteo Papini
P. DÓro
Marcello Restelli
OffRL
24
10
0
15 Dec 2020
Minimax Regret for Stochastic Shortest Path with Adversarial Costs and Known Transition
Liyu Chen
Haipeng Luo
Chen-Yu Wei
21
32
0
07 Dec 2020
Efficient Contextual Bandits with Continuous Actions
Maryam Majzoubi
Chicheng Zhang
Rajan Chari
A. Krishnamurthy
John Langford
Aleksandrs Slivkins
OffRL
29
32
0
10 Jun 2020
Regret Balancing for Bandit and RL Model Selection
Yasin Abbasi-Yadkori
Aldo Pacchiano
My Phan
16
26
0
09 Jun 2020
Rate-adaptive model selection over a collection of black-box contextual bandit algorithms
Aurélien F. Bibaut
Antoine Chambaz
Mark van der Laan
22
6
0
05 Jun 2020
Model selection for contextual bandits
Dylan J. Foster
A. Krishnamurthy
Haipeng Luo
OffRL
16
89
0
03 Jun 2019
Hedging the Drift: Learning to Optimize under Non-Stationarity
Wang Chi Cheung
D. Simchi-Levi
Ruihao Zhu
19
89
0
04 Mar 2019
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting
A. Krishnamurthy
John Langford
Aleksandrs Slivkins
Chicheng Zhang
OffRL
26
66
0
05 Feb 2019
Learning to Collaborate in Markov Decision Processes
Goran Radanović
R. Devidze
David C. Parkes
Adish Singla
27
33
0
23 Jan 2019
Learning to Optimize under Non-Stationarity
Wang Chi Cheung
D. Simchi-Levi
Ruihao Zhu
20
132
0
06 Oct 2018
Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial Bandits
Julian Zimmert
Yevgeny Seldin
AAML
16
173
0
19 Jul 2018
Best of many worlds: Robust model selection for online supervised learning
Vidya Muthukumar
Mitas Ray
A. Sahai
Peter L. Bartlett
OffRL
40
8
0
22 May 2018
Efficient Contextual Bandits in Non-stationary Worlds
Haipeng Luo
Chen-Yu Wei
Alekh Agarwal
John Langford
14
127
0
05 Aug 2017
Kernel-based methods for bandit convex optimization
Sébastien Bubeck
Ronen Eldan
Y. Lee
81
163
0
11 Jul 2016
1