ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.05203
  4. Cited By
CSVideoNet: A Real-time End-to-end Learning Framework for
  High-frame-rate Video Compressive Sensing

CSVideoNet: A Real-time End-to-end Learning Framework for High-frame-rate Video Compressive Sensing

15 December 2016
Kai Xu
Fengbo Ren
ArXivPDFHTML

Papers citing "CSVideoNet: A Real-time End-to-end Learning Framework for High-frame-rate Video Compressive Sensing"

2 / 2 papers shown
Title
Rank Minimization for Snapshot Compressive Imaging
Rank Minimization for Snapshot Compressive Imaging
Yang Liu
Xin Yuan
J. Suo
D. Brady
Qionghai Dai
11
317
0
20 Jul 2018
Convolutional Neural Networks for Non-iterative Reconstruction of
  Compressively Sensed Images
Convolutional Neural Networks for Non-iterative Reconstruction of Compressively Sensed Images
Suhas Lohit
K. Kulkarni
Ronan Kerviche
Pavan Turaga
A. Ashok
9
114
0
15 Aug 2017
1