ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.03940
  4. Cited By
Understanding the Impact of Precision Quantization on the Accuracy and
  Energy of Neural Networks

Understanding the Impact of Precision Quantization on the Accuracy and Energy of Neural Networks

12 December 2016
S. Hashemi
Nicholas Anthony
Hokchhay Tann
R. I. Bahar
Sherief Reda
    MQ
    HAI
ArXivPDFHTML

Papers citing "Understanding the Impact of Precision Quantization on the Accuracy and Energy of Neural Networks"

18 / 18 papers shown
Title
MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from Microwatts to Megawatts for Sustainable AI
MLPerf Power: Benchmarking the Energy Efficiency of Machine Learning Systems from Microwatts to Megawatts for Sustainable AI
Arya Tschand
Arun Tejusve Raghunath Rajan
S. Idgunji
Anirban Ghosh
J. Holleman
...
Rowan Taubitz
Sean Zhan
Scott Wasson
David Kanter
Vijay Janapa Reddi
70
3
0
15 Oct 2024
Fixflow: A Framework to Evaluate Fixed-point Arithmetic in Light-Weight
  CNN Inference
Fixflow: A Framework to Evaluate Fixed-point Arithmetic in Light-Weight CNN Inference
Farhad Taheri
Siavash Bayat Sarmadi
H. Mosanaei-Boorani
Reza Taheri
MQ
23
1
0
19 Feb 2023
RecLight: A Recurrent Neural Network Accelerator with Integrated Silicon
  Photonics
RecLight: A Recurrent Neural Network Accelerator with Integrated Silicon Photonics
Febin P. Sunny
Mahdi Nikdast
S. Pasricha
43
17
0
31 Aug 2022
BitTrain: Sparse Bitmap Compression for Memory-Efficient Training on the
  Edge
BitTrain: Sparse Bitmap Compression for Memory-Efficient Training on the Edge
Abdelrahman I. Hosny
Marina Neseem
Sherief Reda
MQ
54
4
0
29 Oct 2021
How Low Can We Go: Trading Memory for Error in Low-Precision Training
How Low Can We Go: Trading Memory for Error in Low-Precision Training
Chengrun Yang
Ziyang Wu
Jerry Chee
Christopher De Sa
Madeleine Udell
25
2
0
17 Jun 2021
ALERT: Accurate Learning for Energy and Timeliness
ALERT: Accurate Learning for Energy and Timeliness
Chengcheng Wan
M. Santriaji
E. Rogers
H. Hoffmann
Michael Maire
Shan Lu
AI4CE
48
40
0
31 Oct 2019
Optimizing Convolutional Neural Networks for Embedded Systems by Means
  of Neuroevolution
Optimizing Convolutional Neural Networks for Embedded Systems by Means of Neuroevolution
Filip Badáň
Lukás Sekanina
27
4
0
15 Oct 2019
A Resource-Efficient Embedded Iris Recognition System Using Fully
  Convolutional Networks
A Resource-Efficient Embedded Iris Recognition System Using Fully Convolutional Networks
Hokchhay Tann
Heng Zhao
Sherief Reda
19
10
0
08 Sep 2019
Deep Learning Training on the Edge with Low-Precision Posits
Deep Learning Training on the Edge with Low-Precision Posits
H. F. Langroudi
Zachariah Carmichael
Dhireesha Kudithipudi
MQ
27
14
0
30 Jul 2019
Deep Positron: A Deep Neural Network Using the Posit Number System
Deep Positron: A Deep Neural Network Using the Posit Number System
Zachariah Carmichael
Seyed Hamed Fatemi Langroudi
Char Khazanov
Jeffrey Lillie
J. Gustafson
Dhireesha Kudithipudi
MQ
27
96
0
05 Dec 2018
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional
  Network Inference on Video Streams
CBinfer: Exploiting Frame-to-Frame Locality for Faster Convolutional Network Inference on Video Streams
Lukas Cavigelli
Luca Benini
32
26
0
15 Aug 2018
Synergy: A HW/SW Framework for High Throughput CNNs on Embedded
  Heterogeneous SoC
Synergy: A HW/SW Framework for High Throughput CNNs on Embedded Heterogeneous SoC
G. Zhong
Akshat Dubey
Cheng Tan
T. Mitra
31
68
0
28 Mar 2018
Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey
  and Future Directions
Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions
Stylianos I. Venieris
Alexandros Kouris
C. Bouganis
24
184
0
15 Mar 2018
ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error
  Resilience for Energy Efficient Deep Neural Network Accelerators
ThUnderVolt: Enabling Aggressive Voltage Underscaling and Timing Error Resilience for Energy Efficient Deep Neural Network Accelerators
Jeff Zhang
Kartheek Rangineni
Zahra Ghodsi
S. Garg
36
118
0
11 Feb 2018
BitNet: Bit-Regularized Deep Neural Networks
BitNet: Bit-Regularized Deep Neural Networks
Aswin Raghavan
Mohamed R. Amer
S. Chai
Graham Taylor
MQ
43
10
0
16 Aug 2017
Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural
  Networks
Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks
Hokchhay Tann
S. Hashemi
Iris Bahar
Sherief Reda
MQ
35
74
0
11 May 2017
CBinfer: Change-Based Inference for Convolutional Neural Networks on
  Video Data
CBinfer: Change-Based Inference for Convolutional Neural Networks on Video Data
Lukas Cavigelli
Philippe Degen
Luca Benini
BDL
42
51
0
14 Apr 2017
Runtime Configurable Deep Neural Networks for Energy-Accuracy Trade-off
Runtime Configurable Deep Neural Networks for Energy-Accuracy Trade-off
Hokchhay Tann
S. Hashemi
R. I. Bahar
Sherief Reda
34
72
0
19 Jul 2016
1