Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1612.00686
Cited By
Identifying and Categorizing Anomalies in Retinal Imaging Data
2 December 2016
Philipp Seeböck
S. Waldstein
S. Klimscha
Bianca S. Gerendas
R. Donner
T. Schlegl
U. Schmidt-Erfurth
Georg Langs
MedIm
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Identifying and Categorizing Anomalies in Retinal Imaging Data"
10 / 10 papers shown
Title
What can Discriminator do? Towards Box-free Ownership Verification of Generative Adversarial Network
Zi-Shun Huang
Boheng Li
Yan Cai
Run Wang
Shangwei Guo
Liming Fang
Jing Chen
Lina Wang
53
11
0
29 Jul 2023
Prototypical Residual Networks for Anomaly Detection and Localization
H. Zhang
Zuxuan Wu
Junyao Xing
Zhineng Chen
Yuwei Jiang
UQCV
AI4TS
40
62
0
05 Dec 2022
Progressive GANomaly: Anomaly detection with progressively growing GANs
Djennifer K. Madzia-Madzou
Hugo J. Kuijf
MedIm
29
2
0
08 Jun 2022
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li
Kihyuk Sohn
Jinsung Yoon
Tomas Pfister
SSL
UQCV
38
757
0
08 Apr 2021
Student-Teacher Feature Pyramid Matching for Anomaly Detection
Guodong Wang
Shumin Han
Errui Ding
Di Huang
23
218
0
07 Mar 2021
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
40
88
0
30 May 2020
Fast Distance-based Anomaly Detection in Images Using an Inception-like Autoencoder
Natasa Sarafijanovic-Djukic
Jesse Davis
30
24
0
12 Mar 2020
DROCC: Deep Robust One-Class Classification
Sachin Goyal
Aditi Raghunathan
Moksh Jain
H. Simhadri
Prateek Jain
VLM
28
161
0
28 Feb 2020
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
Christoph Baur
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
UQCV
MedIm
13
442
0
12 Apr 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedIm
GAN
45
2,213
0
17 Mar 2017
1