Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.07478
Cited By
An unexpected unity among methods for interpreting model predictions
22 November 2016
Scott M. Lundberg
Su-In Lee
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An unexpected unity among methods for interpreting model predictions"
22 / 22 papers shown
Title
Mapping Knowledge Representations to Concepts: A Review and New Perspectives
Lars Holmberg
P. Davidsson
Per Linde
36
1
0
31 Dec 2022
Easy to Decide, Hard to Agree: Reducing Disagreements Between Saliency Methods
Josip Jukić
Martin Tutek
Jan Snajder
FAtt
33
0
0
15 Nov 2022
Machine Learning for a Sustainable Energy Future
Zhenpeng Yao
Yanwei Lum
Andrew K. Johnston
L. M. Mejia-Mendoza
Xiaoxia Zhou
Yonggang Wen
Alán Aspuru-Guzik
E. Sargent
Z. Seh
32
211
0
19 Oct 2022
Detection of ADHD based on Eye Movements during Natural Viewing
Shuwen Deng
Paul Prasse
D. R. Reich
S. Dziemian
Maja Stegenwallner-Schütz
Daniel G. Krakowczyk
Silvia Makowski
N. Langer
Tobias Scheffer
Lena A. Jäger
36
9
0
04 Jul 2022
Decorrelated Variable Importance
I. Verdinelli
Larry A. Wasserman
FAtt
19
18
0
21 Nov 2021
Explaining Deep Reinforcement Learning Agents In The Atari Domain through a Surrogate Model
Alexander Sieusahai
Matthew J. Guzdial
35
13
0
07 Oct 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
29
0
0
14 May 2021
Why model why? Assessing the strengths and limitations of LIME
Jurgen Dieber
S. Kirrane
FAtt
26
97
0
30 Nov 2020
Explainable Predictive Process Monitoring
Musabir Musabayli
F. Maggi
Williams Rizzi
Josep Carmona
Chiara Di Francescomarino
19
60
0
04 Aug 2020
Making deep neural networks right for the right scientific reasons by interacting with their explanations
P. Schramowski
Wolfgang Stammer
Stefano Teso
Anna Brugger
Xiaoting Shao
Hans-Georg Luigs
Anne-Katrin Mahlein
Kristian Kersting
42
207
0
15 Jan 2020
Technical Report: Partial Dependence through Stratification
T. Parr
James D. Wilson
24
2
0
15 Jul 2019
Global Aggregations of Local Explanations for Black Box models
I. V. D. Linden
H. Haned
Evangelos Kanoulas
FAtt
27
63
0
05 Jul 2019
Training Machine Learning Models by Regularizing their Explanations
A. Ross
FaML
26
0
0
29 Sep 2018
Stakeholders in Explainable AI
Alun D. Preece
Daniel Harborne
Dave Braines
Richard J. Tomsett
Supriyo Chakraborty
15
154
0
29 Sep 2018
Contrastive Explanations for Reinforcement Learning in terms of Expected Consequences
J. V. D. Waa
J. Diggelen
K. Bosch
Mark Antonius Neerincx
OffRL
31
107
0
23 Jul 2018
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
24
82
0
19 Jun 2018
"Why Should I Trust Interactive Learners?" Explaining Interactive Queries of Classifiers to Users
Stefano Teso
Kristian Kersting
FAtt
HAI
25
12
0
22 May 2018
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
28
281
0
16 Nov 2017
MAGIX: Model Agnostic Globally Interpretable Explanations
Nikaash Puri
Piyush B. Gupta
Pratiksha Agarwal
Sukriti Verma
Balaji Krishnamurthy
FAtt
32
41
0
22 Jun 2017
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
35
170
0
23 May 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
54
583
0
10 Mar 2017
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
45
5,865
0
04 Mar 2017
1