ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.07276
  4. Cited By
Asymptotically efficient estimators for self-similar stationary Gaussian
  noises under high frequency observations

Asymptotically efficient estimators for self-similar stationary Gaussian noises under high frequency observations

22 November 2016
M. Fukasawa
Tetsuya Takabatake
ArXiv (abs)PDFHTML

Papers citing "Asymptotically efficient estimators for self-similar stationary Gaussian noises under high frequency observations"

3 / 3 papers shown
Title
Local asymptotic normality property for fractional Gaussian noise under
  high-frequency observations
Local asymptotic normality property for fractional Gaussian noise under high-frequency observations
A. Brouste
M. Fukasawa
30
34
0
12 Oct 2016
Parameter estimation for the discretely observed fractional
  Ornstein-Uhlenbeck process and the Yuima R package
Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package
A. Brouste
S. Iacus
106
81
0
16 Dec 2011
LAN property for some fractional type Brownian motion
LAN property for some fractional type Brownian motion
Serge Cohen
Fabrice Gamboa
C. Lacaux
Jean-Michel Loubes
87
18
0
04 Nov 2011
1