ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.04831
  4. Cited By
The Power of Normalization: Faster Evasion of Saddle Points

The Power of Normalization: Faster Evasion of Saddle Points

15 November 2016
Kfir Y. Levy
ArXivPDFHTML

Papers citing "The Power of Normalization: Faster Evasion of Saddle Points"

19 / 69 papers shown
Title
Escaping Saddles with Stochastic Gradients
Escaping Saddles with Stochastic Gradients
Hadi Daneshmand
Jonas Köhler
Aurelien Lucchi
Thomas Hofmann
24
161
0
15 Mar 2018
Convergence of Gradient Descent on Separable Data
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
J. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
8
163
0
05 Mar 2018
On the Power of Over-parametrization in Neural Networks with Quadratic
  Activation
On the Power of Over-parametrization in Neural Networks with Quadratic Activation
S. Du
J. Lee
27
267
0
03 Mar 2018
Third-order Smoothness Helps: Even Faster Stochastic Optimization
  Algorithms for Finding Local Minima
Third-order Smoothness Helps: Even Faster Stochastic Optimization Algorithms for Finding Local Minima
Yaodong Yu
Pan Xu
Quanquan Gu
6
3
0
18 Dec 2017
Saving Gradient and Negative Curvature Computations: Finding Local
  Minima More Efficiently
Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently
Yaodong Yu
Difan Zou
Quanquan Gu
19
10
0
11 Dec 2017
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of
  Spurious Local Minima
Gradient Descent Learns One-hidden-layer CNN: Don't be Afraid of Spurious Local Minima
S. Du
J. Lee
Yuandong Tian
Barnabás Póczós
Aarti Singh
MLT
29
235
0
03 Dec 2017
First-order Stochastic Algorithms for Escaping From Saddle Points in
  Almost Linear Time
First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time
Yi Tian Xu
Rong Jin
Tianbao Yang
ODL
22
116
0
03 Nov 2017
A Generic Approach for Escaping Saddle points
A Generic Approach for Escaping Saddle points
Sashank J. Reddi
Manzil Zaheer
S. Sra
Barnabás Póczós
Francis R. Bach
Ruslan Salakhutdinov
Alex Smola
18
83
0
05 Sep 2017
Second-Order Optimization for Non-Convex Machine Learning: An Empirical
  Study
Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
ODL
19
143
0
25 Aug 2017
Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian
  Information
Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information
Peng Xu
Farbod Roosta-Khorasani
Michael W. Mahoney
34
210
0
23 Aug 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
31
200
0
20 Jul 2017
Theoretical insights into the optimization landscape of
  over-parameterized shallow neural networks
Theoretical insights into the optimization landscape of over-parameterized shallow neural networks
Mahdi Soltanolkotabi
Adel Javanmard
J. Lee
36
415
0
16 Jul 2017
Block-Normalized Gradient Method: An Empirical Study for Training Deep
  Neural Network
Block-Normalized Gradient Method: An Empirical Study for Training Deep Neural Network
Adams Wei Yu
Lei Huang
Qihang Lin
Ruslan Salakhutdinov
J. Carbonell
ODL
10
24
0
16 Jul 2017
Sampling Matters in Deep Embedding Learning
Sampling Matters in Deep Embedding Learning
Chaoxia Wu
R. Manmatha
Alex Smola
Philipp Krahenbuhl
25
919
0
23 Jun 2017
Online to Offline Conversions, Universality and Adaptive Minibatch Sizes
Online to Offline Conversions, Universality and Adaptive Minibatch Sizes
Kfir Y. Levy
ODL
25
57
0
30 May 2017
Gradient Descent Can Take Exponential Time to Escape Saddle Points
Gradient Descent Can Take Exponential Time to Escape Saddle Points
S. Du
Chi Jin
J. Lee
Michael I. Jordan
Barnabás Póczós
Aarti Singh
16
244
0
29 May 2017
How to Escape Saddle Points Efficiently
How to Escape Saddle Points Efficiently
Chi Jin
Rong Ge
Praneeth Netrapalli
Sham Kakade
Michael I. Jordan
ODL
37
831
0
02 Mar 2017
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Fast Rates for Empirical Risk Minimization of Strict Saddle Problems
Alon Gonen
Shai Shalev-Shwartz
41
30
0
16 Jan 2017
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
Previous
12