Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.04581
Cited By
How to scale distributed deep learning?
14 November 2016
Peter H. Jin
Qiaochu Yuan
F. Iandola
Kurt Keutzer
3DH
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How to scale distributed deep learning?"
50 / 60 papers shown
Title
From Centralized to Decentralized Federated Learning: Theoretical Insights, Privacy Preservation, and Robustness Challenges
Qiongxiu Li
Wenrui Yu
Yufei Xia
Jun Pang
FedML
60
1
0
10 Mar 2025
Distributed Sign Momentum with Local Steps for Training Transformers
Shuhua Yu
Ding Zhou
Cong Xie
An Xu
Zhi-Li Zhang
Xin Liu
S. Kar
69
0
0
26 Nov 2024
Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
Wenrui Yu
Qiongxiu Li
Milan Lopuhaä-Zwakenberg
Mads Græsbøll Christensen
Richard Heusdens
FedML
30
3
0
12 Jul 2024
AI-coupled HPC Workflow Applications, Middleware and Performance
Wes Brewer
Ana Gainaru
Frédéric Suter
Feiyi Wang
M. Emani
S. Jha
30
10
0
20 Jun 2024
Adjacent Leader Decentralized Stochastic Gradient Descent
Haoze He
Jing Wang
A. Choromańska
30
0
0
18 May 2024
Sequence-to-sequence models in peer-to-peer learning: A practical application
Robert Šajina
Ivo Ipšić
43
0
0
02 May 2024
Scale-Robust Timely Asynchronous Decentralized Learning
Purbesh Mitra
S. Ulukus
19
1
0
30 Apr 2024
Topology-Dependent Privacy Bound For Decentralized Federated Learning
Qiongxiu Li
Wenrui Yu
Changlong Ji
Richard Heusdens
24
3
0
13 Dec 2023
Tram-FL: Routing-based Model Training for Decentralized Federated Learning
Kota Maejima
Takayuki Nishio
Asato Yamazaki
Yuko Hara-Azumi
31
3
0
09 Aug 2023
The Evolution of Distributed Systems for Graph Neural Networks and their Origin in Graph Processing and Deep Learning: A Survey
Jana Vatter
R. Mayer
Hans-Arno Jacobsen
GNN
AI4TS
AI4CE
45
23
0
23 May 2023
Age-Aware Gossiping in Network Topologies
Purbesh Mitra
S. Ulukus
19
11
0
06 Apr 2023
Accuracy is not the only Metric that matters: Estimating the Energy Consumption of Deep Learning Models
Johannes Getzner
Bertrand Charpentier
Stephan Günnemann
21
5
0
03 Apr 2023
Accelerating Parallel Stochastic Gradient Descent via Non-blocking Mini-batches
Haoze He
Parijat Dube
6
3
0
02 Nov 2022
RCD-SGD: Resource-Constrained Distributed SGD in Heterogeneous Environment via Submodular Partitioning
Haoze He
Parijat Dube
15
1
0
02 Nov 2022
Asynchronous Fully-Decentralized SGD in the Cluster-Based Model
Hagit Attiya
N. Schiller
FedML
20
0
0
22 Feb 2022
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
Partitioning sparse deep neural networks for scalable training and inference
G. Demirci
Hakan Ferhatosmanoglu
18
11
0
23 Apr 2021
EventGraD: Event-Triggered Communication in Parallel Machine Learning
Soumyadip Ghosh
B. Aquino
V. Gupta
FedML
21
8
0
12 Mar 2021
Understanding Training Efficiency of Deep Learning Recommendation Models at Scale
Bilge Acun
Matthew Murphy
Xiaodong Wang
Jade Nie
Carole-Jean Wu
K. Hazelwood
23
109
0
11 Nov 2020
A Distributed Training Algorithm of Generative Adversarial Networks with Quantized Gradients
Xiaojun Chen
Shu Yang
Liyan Shen
Xuanrong Pang
9
4
0
26 Oct 2020
Decentralized Deep Learning using Momentum-Accelerated Consensus
Aditya Balu
Zhanhong Jiang
Sin Yong Tan
Chinmay Hedge
Young M. Lee
S. Sarkar
FedML
24
22
0
21 Oct 2020
A Low Complexity Decentralized Neural Net with Centralized Equivalence using Layer-wise Learning
Xinyue Liang
Alireza M. Javid
Mikael Skoglund
S. Chatterjee
FedML
17
4
0
29 Sep 2020
Asynchronous Distributed Optimization with Stochastic Delays
Margalit Glasgow
Mary Wootters
12
3
0
22 Sep 2020
Communication-efficient Decentralized Machine Learning over Heterogeneous Networks
Pan Zhou
Qian Lin
Dumitrel Loghin
Beng Chin Ooi
Yuncheng Wu
Hongfang Yu
13
35
0
12 Sep 2020
Synergy between Machine/Deep Learning and Software Engineering: How Far Are We?
Simin Wang
LiGuo Huang
Jidong Ge
Tengfei Zhang
Haitao Feng
Ming Li
He Zhang
Vincent Ng
AI4CE
7
7
0
12 Aug 2020
Multi-Level Local SGD for Heterogeneous Hierarchical Networks
Timothy Castiglia
Anirban Das
S. Patterson
20
13
0
27 Jul 2020
Contextualizing Enhances Gradient Based Meta Learning
Evan Vogelbaum
Rumen Dangovski
L. Jing
Marin Soljacic
34
3
0
17 Jul 2020
Convolutional Neural Network Training with Distributed K-FAC
J. G. Pauloski
Zhao Zhang
Lei Huang
Weijia Xu
Ian Foster
15
30
0
01 Jul 2020
Machine Learning Systems for Intelligent Services in the IoT: A Survey
Wiebke Toussaint
Aaron Yi Ding
LRM
27
0
0
29 May 2020
Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging
Shigang Li
Tal Ben-Nun
Giorgi Nadiradze
Salvatore Di Girolamo
Nikoli Dryden
Dan Alistarh
Torsten Hoefler
21
14
0
30 Apr 2020
A Review of Privacy-preserving Federated Learning for the Internet-of-Things
Christopher Briggs
Zhong Fan
Péter András
23
14
0
24 Apr 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,707
0
18 Mar 2020
Communication-Efficient Distributed Deep Learning: A Comprehensive Survey
Zhenheng Tang
S. Shi
Wei Wang
Bo-wen Li
Xiaowen Chu
21
48
0
10 Mar 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
A Random Gossip BMUF Process for Neural Language Modeling
Yiheng Huang
Jinchuan Tian
Lei Han
Guangsen Wang
Xingcheng Song
Dan Su
Dong Yu
9
3
0
19 Sep 2019
Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations
Shigang Li
Tal Ben-Nun
Salvatore Di Girolamo
Dan Alistarh
Torsten Hoefler
11
58
0
12 Aug 2019
Decentralized Bayesian Learning over Graphs
Anusha Lalitha
Xinghan Wang
O. Kilinc
Y. Lu
T. Javidi
F. Koushanfar
FedML
28
25
0
24 May 2019
Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing
Zhi Zhou
Xu Chen
En Li
Liekang Zeng
Ke Luo
Junshan Zhang
21
1,420
0
24 May 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
11
216
0
15 May 2019
Distributed Byzantine Tolerant Stochastic Gradient Descent in the Era of Big Data
Richeng Jin
Xiaofan He
H. Dai
FedML
11
13
0
27 Feb 2019
CodedReduce: A Fast and Robust Framework for Gradient Aggregation in Distributed Learning
Amirhossein Reisizadeh
Saurav Prakash
Ramtin Pedarsani
A. Avestimehr
20
23
0
06 Feb 2019
Bandwidth Reduction using Importance Weighted Pruning on Ring AllReduce
Zehua Cheng
Zhenghua Xu
14
8
0
06 Jan 2019
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
21
518
0
07 Dec 2018
Elastic Gossip: Distributing Neural Network Training Using Gossip-like Protocols
Siddharth Pramod
FedML
9
2
0
06 Dec 2018
On the Computational Inefficiency of Large Batch Sizes for Stochastic Gradient Descent
Noah Golmant
N. Vemuri
Z. Yao
Vladimir Feinberg
A. Gholami
Kai Rothauge
Michael W. Mahoney
Joseph E. Gonzalez
13
72
0
30 Nov 2018
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
22
343
0
27 Nov 2018
Hydra: A Peer to Peer Distributed Training & Data Collection Framework
Vaibhav Mathur
K. Chahal
OffRL
11
2
0
24 Nov 2018
A Hitchhiker's Guide On Distributed Training of Deep Neural Networks
K. Chahal
Manraj Singh Grover
Kuntal Dey
3DH
OOD
4
53
0
28 Oct 2018
Language Modeling at Scale
Md. Mostofa Ali Patwary
Milind Chabbi
Heewoo Jun
Jiaji Huang
G. Diamos
Kenneth Ward Church
ALM
20
5
0
23 Oct 2018
Distributed Learning over Unreliable Networks
Chen Yu
Hanlin Tang
Cédric Renggli
S. Kassing
Ankit Singla
Dan Alistarh
Ce Zhang
Ji Liu
OOD
19
60
0
17 Oct 2018
1
2
Next