ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.03824
  4. Cited By
Learning to Learn without Gradient Descent by Gradient Descent

Learning to Learn without Gradient Descent by Gradient Descent

11 November 2016
Yutian Chen
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
ArXivPDFHTML

Papers citing "Learning to Learn without Gradient Descent by Gradient Descent"

13 / 13 papers shown
Title
Mnemosyne: Learning to Train Transformers with Transformers
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
39
9
0
02 Feb 2023
L$^{2}$NAS: Learning to Optimize Neural Architectures via
  Continuous-Action Reinforcement Learning
L2^{2}2NAS: Learning to Optimize Neural Architectures via Continuous-Action Reinforcement Learning
Keith G. Mills
Fred X. Han
Mohammad Salameh
Seyed Saeed Changiz Rezaei
Linglong Kong
Wei Lu
Shuo Lian
Shangling Jui
Di Niu
34
10
0
25 Sep 2021
Bootstrapped Meta-Learning
Bootstrapped Meta-Learning
Sebastian Flennerhag
Yannick Schroecker
Tom Zahavy
Hado van Hasselt
David Silver
Satinder Singh
38
59
0
09 Sep 2021
Discovery of Useful Questions as Auxiliary Tasks
Discovery of Useful Questions as Auxiliary Tasks
Vivek Veeriah
Matteo Hessel
Zhongwen Xu
Richard L. Lewis
Janarthanan Rajendran
Junhyuk Oh
H. V. Hasselt
David Silver
Satinder Singh
LLMAG
19
86
0
10 Sep 2019
Meta-learning of Sequential Strategies
Meta-learning of Sequential Strategies
Pedro A. Ortega
Jane X. Wang
Mark Rowland
Tim Genewein
Z. Kurth-Nelson
...
Yee Whye Teh
H. V. Hasselt
Nando de Freitas
M. Botvinick
Shane Legg
OffRL
25
96
0
08 May 2019
Investigating performance of neural networks and gradient boosting
  models approximating microscopic traffic simulations in traffic optimization
  tasks
Investigating performance of neural networks and gradient boosting models approximating microscopic traffic simulations in traffic optimization tasks
P. Góra
M. Brzeski
Marcin Mo.zejko
Arkadiusz Klemenko
A. Kochanski
13
6
0
02 Dec 2018
Decouple Learning for Parameterized Image Operators
Decouple Learning for Parameterized Image Operators
Qingnan Fan
Dongdong Chen
Lu Yuan
G. Hua
Nenghai Yu
Baoquan Chen
OOD
24
63
0
21 Jul 2018
Few-shot Autoregressive Density Estimation: Towards Learning to Learn
  Distributions
Few-shot Autoregressive Density Estimation: Towards Learning to Learn Distributions
Scott E. Reed
Yutian Chen
T. Paine
Aaron van den Oord
S. M. Ali Eslami
Danilo Jimenez Rezende
Oriol Vinyals
Nando de Freitas
41
88
0
27 Oct 2017
Learned Optimizers that Scale and Generalize
Learned Optimizers that Scale and Generalize
Olga Wichrowska
Niru Maheswaranathan
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Nando de Freitas
Jascha Narain Sohl-Dickstein
AI4CE
17
284
0
14 Mar 2017
Learning Gradient Descent: Better Generalization and Longer Horizons
Learning Gradient Descent: Better Generalization and Longer Horizons
Kaifeng Lyu
Shunhua Jiang
Jian Li
14
113
0
10 Mar 2017
Neural Combinatorial Optimization with Reinforcement Learning
Neural Combinatorial Optimization with Reinforcement Learning
Irwan Bello
Hieu H. Pham
Quoc V. Le
Mohammad Norouzi
Samy Bengio
71
1,456
0
29 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
271
5,327
0
05 Nov 2016
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
80
95
0
27 Feb 2014
1