ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.03158
  4. Cited By
Using Neural Networks to Compute Approximate and Guaranteed Feasible
  Hamilton-Jacobi-Bellman PDE Solutions

Using Neural Networks to Compute Approximate and Guaranteed Feasible Hamilton-Jacobi-Bellman PDE Solutions

10 November 2016
Frank J. Jiang
Glen Chou
Mo Chen
Claire Tomlin
ArXivPDFHTML

Papers citing "Using Neural Networks to Compute Approximate and Guaranteed Feasible Hamilton-Jacobi-Bellman PDE Solutions"

1 / 1 papers shown
Title
Technical Report: Convex Optimization of Nonlinear Feedback Controllers
  via Occupation Measures
Technical Report: Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures
Anirudha Majumdar
Ram Vasudevan
Mark M. Tobenkin
Russ Tedrake
73
140
0
31 May 2013
1