Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.02764
Cited By
Inferring low-dimensional microstructure representations using convolutional neural networks
8 November 2016
Nicholas Lubbers
T. Lookman
K. Barros
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Inferring low-dimensional microstructure representations using convolutional neural networks"
6 / 6 papers shown
Title
Hybrid machine-learned homogenization: Bayesian data mining and convolutional neural networks
Julian Lißner
F. Fritzen
BDL
24
2
0
24 Feb 2023
Towards Microstructural State Variables in Materials Systems
V. Sundararaghavan
Megna N. Shah
Jeff P. Simmons
AI4CE
24
0
0
11 Jan 2023
Artificial intelligence approaches for materials-by-design of energetic materials: state-of-the-art, challenges, and future directions
Joseph B. Choi
Phong C. H. Nguyen
O. Sen
H. Udaykumar
Stephen Seung-Yeob Baek
PINN
AI4CE
29
11
0
15 Nov 2022
Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science
Charlotte Loh
T. Christensen
Rumen Dangovski
Samuel Kim
Marin Soljacic
37
17
0
15 Oct 2021
An efficient optimization based microstructure reconstruction approach with multiple loss functions
Anindya Bhaduri
Ashwini Gupta
Audrey Olivier
L. Graham‐Brady
38
29
0
04 Feb 2021
High throughput quantitative metallography for complex microstructures using deep learning: A case study in ultrahigh carbon steel
Brian L. DeCost
Bo Lei
T. Francis
Elizabeth A. Holm
AI4CE
25
143
0
04 May 2018
1