Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.02189
Cited By
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
7 November 2016
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CoCoA: A General Framework for Communication-Efficient Distributed Optimization"
50 / 52 papers shown
Title
Communication-Efficient, 2D Parallel Stochastic Gradient Descent for Distributed-Memory Optimization
Aditya Devarakonda
Ramakrishnan Kannan
FedML
37
0
0
13 Jan 2025
On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness
Shengkun Zhu
Jinshan Zeng
Sheng Wang
Yuan Sun
Xiaodong Li
Yuan Yao
Zhiyong Peng
52
0
0
23 Jul 2024
Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance
A. Stollenwerk
Laurent Jacques
FedML
28
0
0
17 May 2024
Analysis of Total Variation Minimization for Clustered Federated Learning
Alexander Jung
16
2
0
10 Mar 2024
Federated Learning for Sparse Principal Component Analysis
Sin Cheng Ciou
Pin-Jui Chen
Elvin Y. Tseng
Yuh-Jye Lee
FedML
26
0
0
15 Nov 2023
Continual Learning with Distributed Optimization: Does CoCoA Forget?
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
CLL
OOD
27
1
0
30 Nov 2022
FeDXL: Provable Federated Learning for Deep X-Risk Optimization
Zhishuai Guo
Rong Jin
Jiebo Luo
Tianbao Yang
FedML
47
8
0
26 Oct 2022
Recovery Guarantees for Distributed-OMP
Chen Amiraz
Robert Krauthgamer
B. Nadler
26
0
0
15 Sep 2022
Cerberus: Exploring Federated Prediction of Security Events
Mohammad Naseri
Yufei Han
Enrico Mariconti
Yun Shen
Gianluca Stringhini
Emiliano De Cristofaro
FedML
45
14
0
07 Sep 2022
Flexible Vertical Federated Learning with Heterogeneous Parties
Timothy Castiglia
Shiqiang Wang
S. Patterson
FedML
42
34
0
26 Aug 2022
FedGiA: An Efficient Hybrid Algorithm for Federated Learning
Shenglong Zhou
Geoffrey Ye Li
FedML
31
16
0
03 May 2022
Over-the-Air Federated Learning via Second-Order Optimization
Peng Yang
Yuning Jiang
Ting Wang
Yong Zhou
Yuanming Shi
Colin N. Jones
45
28
0
29 Mar 2022
Communication Efficient Federated Learning via Ordered ADMM in a Fully Decentralized Setting
Yicheng Chen
Rick S. Blum
Brian M. Sadler
FedML
14
7
0
05 Feb 2022
Game of Gradients: Mitigating Irrelevant Clients in Federated Learning
Lokesh Nagalapatti
Mahdi S. Hosseini
FedML
27
75
0
23 Oct 2021
Communication Efficiency in Federated Learning: Achievements and Challenges
Osama Shahid
Seyedamin Pouriyeh
R. Parizi
Quan Z. Sheng
Gautam Srivastava
Liang Zhao
FedML
40
74
0
23 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
187
412
0
14 Jul 2021
FedMix: Approximation of Mixup under Mean Augmented Federated Learning
Tehrim Yoon
Sumin Shin
Sung Ju Hwang
Eunho Yang
FedML
27
165
0
01 Jul 2021
Joint Client Scheduling and Resource Allocation under Channel Uncertainty in Federated Learning
Madhusanka Manimel Wadu
S. Samarakoon
M. Bennis
18
51
0
12 Jun 2021
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
Towards Demystifying Serverless Machine Learning Training
Jiawei Jiang
Shaoduo Gan
Yue Liu
Fanlin Wang
Gustavo Alonso
Ana Klimovic
Ankit Singla
Wentao Wu
Ce Zhang
19
122
0
17 May 2021
Federated Few-Shot Learning with Adversarial Learning
Chenyou Fan
Jianwei Huang
FedML
18
29
0
01 Apr 2021
Federated Learning in Unreliable and Resource-Constrained Cellular Wireless Networks
M. Salehi
Ekram Hossain
FedML
51
82
0
09 Dec 2020
Design and Analysis of Uplink and Downlink Communications for Federated Learning
Sihui Zheng
Cong Shen
Xiang Chen
39
140
0
07 Dec 2020
Toward Multiple Federated Learning Services Resource Sharing in Mobile Edge Networks
Minh N. H. Nguyen
N. H. Tran
Y. Tun
Zhu Han
Choong Seon Hong
FedML
27
49
0
25 Nov 2020
Fast-Convergent Federated Learning
Hung T. Nguyen
Vikash Sehwag
Seyyedali Hosseinalipour
Christopher G. Brinton
M. Chiang
H. Vincent Poor
FedML
28
192
0
26 Jul 2020
Multi-Stage Hybrid Federated Learning over Large-Scale D2D-Enabled Fog Networks
Seyyedali Hosseinalipour
Sheikh Shams Azam
Christopher G. Brinton
Nicolò Michelusi
Vaneet Aggarwal
David J. Love
H. Dai
29
91
0
18 Jul 2020
Federated Learning for Task and Resource Allocation in Wireless High Altitude Balloon Networks
Sihua Wang
Mingzhe Chen
Changchuan Yin
Walid Saad
Choong Seon Hong
Shuguang Cui
H. Vincent Poor
36
67
0
19 Mar 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
484
0
12 Feb 2020
Crowdsourcing the Perception of Machine Teaching
Jonggi Hong
Kyungjun Lee
June Xu
Hernisa Kacorri
HAI
LRM
25
29
0
05 Feb 2020
FedDANE: A Federated Newton-Type Method
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
18
155
0
07 Jan 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
37
629
0
31 Dec 2019
Communication-Efficient Local Decentralized SGD Methods
Xiang Li
Wenhao Yang
Shusen Wang
Zhihua Zhang
30
53
0
21 Oct 2019
Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints
Felix Sattler
K. Müller
Wojciech Samek
FedML
71
969
0
04 Oct 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
94
2,286
0
04 Jul 2019
Variational Federated Multi-Task Learning
Luca Corinzia
Ami Beuret
J. M. Buhmann
FedML
27
159
0
14 Jun 2019
Communication-Efficient Accurate Statistical Estimation
Jianqing Fan
Yongyi Guo
Kaizheng Wang
19
110
0
12 Jun 2019
Fair Resource Allocation in Federated Learning
Tian Li
Maziar Sanjabi
Ahmad Beirami
Virginia Smith
FedML
18
781
0
25 May 2019
Decentralized Bayesian Learning over Graphs
Anusha Lalitha
Xinghan Wang
O. Kilinc
Y. Lu
T. Javidi
F. Koushanfar
FedML
28
25
0
24 May 2019
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
33
348
0
22 Aug 2018
COLA: Decentralized Linear Learning
Lie He
An Bian
Martin Jaggi
24
117
0
13 Aug 2018
A Distributed Second-Order Algorithm You Can Trust
Celestine Mendler-Dünner
Aurelien Lucchi
Matilde Gargiani
An Bian
Thomas Hofmann
Martin Jaggi
34
32
0
20 Jun 2018
Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
23
50
0
01 Jun 2018
Snap ML: A Hierarchical Framework for Machine Learning
Celestine Mendler-Dünner
Thomas Parnell
Dimitrios Sarigiannis
Nikolas Ioannou
Andreea Anghel
Gummadi Ravi
Madhusudanan Kandasamy
Haralambos Pozidis
GP
17
26
0
16 Mar 2018
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
36
127
0
11 Sep 2017
On the convergence properties of a
K
K
K
-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
46
232
0
03 Aug 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
17
1,780
0
30 May 2017
Understanding and Optimizing the Performance of Distributed Machine Learning Applications on Apache Spark
Celestine Mendler-Dünner
Thomas Parnell
Kubilay Atasu
Manolis Sifalakis
H. Pozidis
27
17
0
05 Dec 2016
Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data
Jialei Wang
J. Lee
M. Mahdavi
Mladen Kolar
Nathan Srebro
21
50
0
10 Oct 2016
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
Efficient Distributed Learning with Sparsity
Jialei Wang
Mladen Kolar
Nathan Srebro
Tong Zhang
FedML
26
151
0
25 May 2016
1
2
Next