Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.08749
Cited By
Differentially Private Variational Inference for Non-conjugate Models
27 October 2016
Joonas Jälkö
O. Dikmen
Antti Honkela
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Differentially Private Variational Inference for Non-conjugate Models"
33 / 33 papers shown
Title
Noise-Aware Differentially Private Variational Inference
Talal Alrawajfeh
Joonas Jälkö
Antti Honkela
35
0
0
25 Oct 2024
A Bias-Variance Decomposition for Ensembles over Multiple Synthetic Datasets
Ossi Raisa
Antti Honkela
75
0
0
06 Feb 2024
Collaborative Learning From Distributed Data With Differentially Private Synthetic Twin Data
Lukas Prediger
Joonas Jälkö
Antti Honkela
Samuel Kaski
FedML
30
1
0
09 Aug 2023
Differentially Private Statistical Inference through
β
β
β
-Divergence One Posterior Sampling
Jack Jewson
Sahra Ghalebikesabi
Chris Holmes
32
2
0
11 Jul 2023
On Consistent Bayesian Inference from Synthetic Data
Ossi Raisa
Joonas Jälkö
Antti Honkela
SyDa
29
2
0
26 May 2023
Differentially Private Normalizing Flows for Density Estimation, Data Synthesis, and Variational Inference with Application to Electronic Health Records
Bingyue Su
Yu Wang
Daniele E. Schiavazzi
Fang Liu
16
2
0
11 Feb 2023
Federated Variational Inference Methods for Structured Latent Variable Models
Conor Hassan
Roberto Salomone
Kerrie Mengersen
BDL
FedML
21
4
0
07 Feb 2023
DPVIm: Differentially Private Variational Inference Improved
Joonas Jälkö
Lukas Prediger
Antti Honkela
Samuel Kaski
31
3
0
28 Oct 2022
Differentially private partitioned variational inference
Mikko A. Heikkilä
Matthew Ashman
S. Swaroop
Richard E. Turner
Antti Honkela
FedML
24
2
0
23 Sep 2022
Noise-Aware Statistical Inference with Differentially Private Synthetic Data
Ossi Raisa
Joonas Jälkö
Samuel Kaski
Antti Honkela
SyDa
37
10
0
28 May 2022
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
19
12
0
24 Feb 2022
Differentially private stochastic expectation propagation (DP-SEP)
Margarita Vinaroz
Mijung Park
25
1
0
25 Nov 2021
Locally Differentially Private Bayesian Inference
Tejas D. Kulkarni
Joonas Jälkö
Samuel Kaski
Antti Honkela
42
2
0
27 Oct 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
19
71
0
04 Jul 2021
Gaussian Processes with Differential Privacy
Antti Honkela
Laila Melkas
21
2
0
01 Jun 2021
D3p -- A Python Package for Differentially-Private Probabilistic Programming
Lukas Prediger
Niki Loppi
Samuel Kaski
Antti Honkela
17
6
0
22 Mar 2021
Generating private data with user customization
Xiao Chen
Thomas Navidi
Ram Rajagopal
11
2
0
02 Dec 2020
Differentially Private Bayesian Inference for Generalized Linear Models
Tejas D. Kulkarni
Joonas Jälkö
A. Koskela
Samuel Kaski
Antti Honkela
35
31
0
01 Nov 2020
Privacy-preserving Data Sharing on Vertically Partitioned Data
Razane Tajeddine
Joonas Jälkö
Samuel Kaski
Antti Honkela
FedML
36
8
0
19 Oct 2020
Controlling Privacy Loss in Sampling Schemes: an Analysis of Stratified and Cluster Sampling
Mark Bun
Jörg Drechsler
Marco Gaboardi
Audra McMillan
Jayshree Sarathy
37
7
0
24 Jul 2020
Privacy-preserving data sharing via probabilistic modelling
Joonas Jälkö
Eemil Lagerspetz
J. Haukka
Sasu Tarkoma
Antti Honkela
Samuel Kaski
23
15
0
10 Dec 2019
Reviewing and Improving the Gaussian Mechanism for Differential Privacy
Jun Zhao
Teng Wang
Tao Bai
Kwok-Yan Lam
Zhiying Xu
Shuyu Shi
Xuebin Ren
Xinyu Yang
Yang Liu
Han Yu
30
30
0
27 Nov 2019
Differentially Private Federated Variational Inference
Mrinank Sharma
M. Hutchinson
S. Swaroop
Antti Honkela
Richard E. Turner
FedML
11
7
0
24 Nov 2019
Differentially Private Bayesian Linear Regression
G. Bernstein
Daniel Sheldon
32
58
0
29 Oct 2019
Data-Dependent Differentially Private Parameter Learning for Directed Graphical Models
Amrita Roy Chowdhury
Theodoros Rekatsinas
S. Jha
10
10
0
30 May 2019
Differentially Private Markov Chain Monte Carlo
Mikko A. Heikkilä
Joonas Jälkö
O. Dikmen
Antti Honkela
27
25
0
29 Jan 2019
Bayesian Differential Privacy for Machine Learning
Aleksei Triastcyn
Boi Faltings
20
2
0
28 Jan 2019
Learning Rate Adaptation for Federated and Differentially Private Learning
A. Koskela
Antti Honkela
FedML
12
27
0
11 Sep 2018
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences
Borja Balle
Gilles Barthe
Marco Gaboardi
19
378
0
04 Jul 2018
On Connecting Stochastic Gradient MCMC and Differential Privacy
Bai Li
Changyou Chen
Hao Liu
Lawrence Carin
41
38
0
25 Dec 2017
Differentially Private Variational Dropout
B. Ermiş
A. Cemgil
21
5
0
30 Nov 2017
Differentially Private Bayesian Learning on Distributed Data
Mikko A. Heikkilä
Eemil Lagerspetz
Samuel Kaski
Kana Shimizu
Sasu Tarkoma
Antti Honkela
FedML
25
58
0
03 Mar 2017
Variational Bayes In Private Settings (VIPS)
Mijung Park
James R. Foulds
Kamalika Chaudhuri
Max Welling
21
42
0
01 Nov 2016
1