Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.07524
Cited By
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
24 October 2016
Alexandra Chouldechova
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fair prediction with disparate impact: A study of bias in recidivism prediction instruments"
50 / 207 papers shown
Title
Algorithmic Fairness in Education
René F. Kizilcec
Hansol Lee
FaML
25
119
0
10 Jul 2020
Fair Performance Metric Elicitation
G. Hiranandani
Harikrishna Narasimhan
Oluwasanmi Koyejo
19
18
0
23 Jun 2020
Two Simple Ways to Learn Individual Fairness Metrics from Data
Debarghya Mukherjee
Mikhail Yurochkin
Moulinath Banerjee
Yuekai Sun
FaML
21
96
0
19 Jun 2020
Fair clustering via equitable group representations
Mohsen Abbasi
Aditya Bhaskara
Suresh Venkatasubramanian
FaML
FedML
21
86
0
19 Jun 2020
Extending the Machine Learning Abstraction Boundary: A Complex Systems Approach to Incorporate Societal Context
Donald Martin
Vinodkumar Prabhakaran
Jill A. Kuhlberg
A. Smart
William S. Isaac
FaML
6
40
0
17 Jun 2020
Fairness in Forecasting and Learning Linear Dynamical Systems
Quan-Gen Zhou
Jakub Mareˇcek
Robert Shorten
AI4TS
11
7
0
12 Jun 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
6
76
0
11 Jun 2020
Principles to Practices for Responsible AI: Closing the Gap
Daniel S. Schiff
B. Rakova
A. Ayesh
Anat Fanti
M. Lennon
19
87
0
08 Jun 2020
Participatory Problem Formulation for Fairer Machine Learning Through Community Based System Dynamics
Donald Martin
Vinodkumar Prabhakaran
Jill A. Kuhlberg
A. Smart
William S. Isaac
FaML
8
62
0
15 May 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
57
83
0
08 May 2020
A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
Philippe C. Besse
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
Laurent Risser
FaML
6
62
0
31 Mar 2020
Auditing ML Models for Individual Bias and Unfairness
Songkai Xue
Mikhail Yurochkin
Yuekai Sun
MLAU
40
22
0
11 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
11
212
0
09 Mar 2020
Trustworthy AI
Jeannette M. Wing
12
213
0
14 Feb 2020
Joint Optimization of AI Fairness and Utility: A Human-Centered Approach
Yunfeng Zhang
Rachel K. E. Bellamy
Kush R. Varshney
6
38
0
05 Feb 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
22
387
0
21 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
8
7
0
31 Dec 2019
Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics
Debjani Saha
Candice Schumann
Duncan C. McElfresh
John P. Dickerson
Michelle L. Mazurek
Michael Carl Tschantz
FaML
16
16
0
17 Dec 2019
Fair Data Adaptation with Quantile Preservation
Drago Plečko
N. Meinshausen
14
28
0
15 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
S. Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
11
6,106
0
22 Oct 2019
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
14
179
0
14 Oct 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
19
54
0
24 Aug 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
299
4,203
0
23 Aug 2019
With Malice Towards None: Assessing Uncertainty via Equalized Coverage
Yaniv Romano
Rina Foygel Barber
C. Sabatti
Emmanuel J. Candès
UQCV
11
73
0
15 Aug 2019
A Causal Bayesian Networks Viewpoint on Fairness
Silvia Chiappa
William S. Isaac
FaML
12
62
0
15 Jul 2019
Does Object Recognition Work for Everyone?
Terrance Devries
Ishan Misra
Changhan Wang
L. V. D. van der Maaten
16
261
0
06 Jun 2019
Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination
Nathan Kallus
Xiaojie Mao
Angela Zhou
FaML
13
155
0
01 Jun 2019
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
Alekh Agarwal
Miroslav Dudík
Zhiwei Steven Wu
FaML
16
240
0
30 May 2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
FaML
FedML
9
84
0
25 May 2019
Learning Fair Representations via an Adversarial Framework
Rui Feng
Yang Yang
Yuehan Lyu
Chenhao Tan
Yizhou Sun
Chunping Wang
FaML
11
55
0
30 Apr 2019
The invisible power of fairness. How machine learning shapes democracy
E. Beretta
A. Santangelo
Bruno Lepri
A. Vetrò
Juan Carlos De Martin
FaML
13
6
0
22 Mar 2019
Predictive Inequity in Object Detection
Benjamin Wilson
Judy Hoffman
Jamie Morgenstern
19
218
0
21 Feb 2019
Fair Decisions Despite Imperfect Predictions
Niki Kilbertus
Manuel Gomez Rodriguez
Bernhard Schölkopf
Krikamol Muandet
Isabel Valera
FaML
OffRL
13
5
0
08 Feb 2019
Equal Opportunity in Online Classification with Partial Feedback
Yahav Bechavod
Katrina Ligett
Aaron Roth
Bo Waggoner
Zhiwei Steven Wu
FaML
11
60
0
06 Feb 2019
Fair and Unbiased Algorithmic Decision Making: Current State and Future Challenges
Songül Tolan
FaML
16
31
0
15 Jan 2019
Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements
Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Allison Woodruff
Christine Luu
Pierre Kreitmann
Jonathan Bischof
Ed H. Chi
FaML
26
150
0
14 Jan 2019
Crowdsourcing with Fairness, Diversity and Budget Constraints
Naman Goel
Boi Faltings
FaML
8
20
0
31 Oct 2018
Model Cards for Model Reporting
Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
31
1,831
0
05 Oct 2018
From Soft Classifiers to Hard Decisions: How fair can we be?
R. Canetti
A. Cohen
Nishanth Dikkala
Govind Ramnarayan
Sarah Scheffler
Adam D. Smith
FaML
6
59
0
03 Oct 2018
Can everyday AI be ethical. Fairness of Machine Learning Algorithms
Philippe C. Besse
C. Castets-Renard
Aurélien Garivier
Jean-Michel Loubes
FaML
11
5
0
03 Oct 2018
Correspondences between Privacy and Nondiscrimination: Why They Should Be Studied Together
Anupam Datta
S. Sen
Michael Carl Tschantz
13
5
0
06 Aug 2018
Classification with Fairness Constraints: A Meta-Algorithm with Provable Guarantees
L. E. Celis
Lingxiao Huang
Vijay Keswani
Nisheeth K. Vishnoi
FaML
44
301
0
15 Jun 2018
What About Applied Fairness?
Jared Sylvester
Edward Raff
FaML
14
10
0
13 Jun 2018
Multiaccuracy: Black-Box Post-Processing for Fairness in Classification
Michael P. Kim
Amirata Ghorbani
James Y. Zou
MLAU
12
335
0
31 May 2018
Causal Reasoning for Algorithmic Fairness
Joshua R. Loftus
Chris Russell
Matt J. Kusner
Ricardo M. A. Silva
FaML
CML
18
125
0
15 May 2018
Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems
S. Kiritchenko
Saif M. Mohammad
FaML
11
430
0
11 May 2018
Human Perceptions of Fairness in Algorithmic Decision Making: A Case Study of Criminal Risk Prediction
Nina Grgic-Hlaca
Elissa M. Redmiles
Krishna P. Gummadi
Adrian Weller
FaML
6
225
0
26 Feb 2018
Path-Specific Counterfactual Fairness
Silvia Chiappa
Thomas P. S. Gillam
CML
FaML
19
334
0
22 Feb 2018
Online Learning with an Unknown Fairness Metric
Stephen Gillen
Christopher Jung
Michael Kearns
Aaron Roth
FaML
14
143
0
20 Feb 2018
A comparative study of fairness-enhancing interventions in machine learning
Sorelle A. Friedler
C. Scheidegger
Suresh Venkatasubramanian
Sonam Choudhary
Evan P. Hamilton
Derek Roth
FaML
21
634
0
13 Feb 2018
Previous
1
2
3
4
5
Next