ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.07379
  4. Cited By
Truncated Variance Reduction: A Unified Approach to Bayesian
  Optimization and Level-Set Estimation

Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation

24 October 2016
Ilija Bogunovic
Jonathan Scarlett
Andreas Krause
V. Cevher
ArXivPDFHTML

Papers citing "Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation"

22 / 22 papers shown
Title
Variational Search Distributions
Variational Search Distributions
Daniel M. Steinberg
Rafael Oliveira
Cheng Soon Ong
Edwin V. Bonilla
33
0
0
10 Sep 2024
Active Few-Shot Fine-Tuning
Active Few-Shot Fine-Tuning
Jonas Hübotter
Bhavya Sukhija
Lenart Treven
Yarden As
Andreas Krause
39
1
0
13 Feb 2024
Practical Path-based Bayesian Optimization
Practical Path-based Bayesian Optimization
Jose Pablo Folch
J. Odgers
Shiqiang Zhang
Robert M. Lee
B. Shafei
David Walz
Calvin Tsay
Mark van der Wilk
Ruth Misener
44
2
0
01 Dec 2023
Learning Regions of Interest for Bayesian Optimization with Adaptive
  Level-Set Estimation
Learning Regions of Interest for Bayesian Optimization with Adaptive Level-Set Estimation
Fengxue Zhang
Jialin Song
James Bowden
Alexander Ladd
Yisong Yue
Thomas A. Desautels
Yuxin Chen
30
6
0
25 Jul 2023
Movement Penalized Bayesian Optimization with Application to Wind Energy
  Systems
Movement Penalized Bayesian Optimization with Application to Wind Energy Systems
Shyam Sundhar Ramesh
Pier Giuseppe Sessa
Andreas Krause
Ilija Bogunovic
16
12
0
14 Oct 2022
Online Subset Selection using $α$-Core with no Augmented Regret
Online Subset Selection using ααα-Core with no Augmented Regret
Sourav Sahoo
Siddhant Chaudhary
S. Mukhopadhyay
Abhishek Sinha
OffRL
45
0
0
28 Sep 2022
Graph Neural Network Bandits
Graph Neural Network Bandits
Parnian Kassraie
Andreas Krause
Ilija Bogunovic
26
11
0
13 Jul 2022
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
33
1
0
07 Jun 2022
Online Nonsubmodular Minimization with Delayed Costs: From Full
  Information to Bandit Feedback
Online Nonsubmodular Minimization with Delayed Costs: From Full Information to Bandit Feedback
Tianyi Lin
Aldo Pacchiano
Yaodong Yu
Michael I. Jordan
21
0
0
15 May 2022
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Look-Ahead Acquisition Functions for Bernoulli Level Set Estimation
Benjamin Letham
Phillip Guan
Chase Tymms
E. Bakshy
Michael Shvartsman
22
10
0
18 Mar 2022
Nearly Optimal Algorithms for Level Set Estimation
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin G. Jamieson
Robert D. Nowak
Lalit P. Jain
14
22
0
02 Nov 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
31
51
0
20 Aug 2021
Corruption-Tolerant Gaussian Process Bandit Optimization
Corruption-Tolerant Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
Jonathan Scarlett
28
51
0
04 Mar 2020
Bayesian Optimization with Unknown Search Space
Bayesian Optimization with Unknown Search Space
Huong Ha
Santu Rana
Sunil R. Gupta
Thanh Nguyen
Hung The Tran
Svetha Venkatesh
21
22
0
29 Oct 2019
Bayesian Experimental Design for Finding Reliable Level Set under Input
  Uncertainty
Bayesian Experimental Design for Finding Reliable Level Set under Input Uncertainty
S. Iwazaki
Yu Inatsu
Ichiro Takeuchi
17
15
0
26 Oct 2019
No-Regret Learning in Unknown Games with Correlated Payoffs
No-Regret Learning in Unknown Games with Correlated Payoffs
Pier Giuseppe Sessa
Ilija Bogunovic
Maryam Kamgarpour
Andreas Krause
OffRL
24
39
0
18 Sep 2019
On the Design of Black-box Adversarial Examples by Leveraging
  Gradient-free Optimization and Operator Splitting Method
On the Design of Black-box Adversarial Examples by Leveraging Gradient-free Optimization and Operator Splitting Method
Pu Zhao
Sijia Liu
Pin-Yu Chen
Nghia Hoang
Kaidi Xu
B. Kailkhura
Xue Lin
AAML
27
54
0
26 Jul 2019
Tight Regret Bounds for Bayesian Optimization in One Dimension
Tight Regret Bounds for Bayesian Optimization in One Dimension
Jonathan Scarlett
38
27
0
30 May 2018
Derivative free optimization via repeated classification
Derivative free optimization via repeated classification
Tatsunori B. Hashimoto
Steve Yadlowsky
John C. Duchi
11
18
0
11 Apr 2018
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization
Jonathan Scarlett
Ilija Bogunovic
V. Cevher
25
99
0
31 May 2017
Multi-fidelity Gaussian Process Bandit Optimisation
Multi-fidelity Gaussian Process Bandit Optimisation
Kirthevasan Kandasamy
Gautam Dasarathy
Junier B. Oliva
J. Schneider
Barnabás Póczós
14
76
0
20 Mar 2016
Bayesian Multi-Scale Optimistic Optimization
Bayesian Multi-Scale Optimistic Optimization
Ziyun Wang
B. Shakibi
L. Jin
Nando de Freitas
80
95
0
27 Feb 2014
1