Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05820
Cited By
Membership Inference Attacks against Machine Learning Models
18 October 2016
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Membership Inference Attacks against Machine Learning Models"
50 / 2,056 papers shown
Title
BadNL: Backdoor Attacks against NLP Models with Semantic-preserving Improvements
Xiaoyi Chen
A. Salem
Dingfan Chen
Michael Backes
Shiqing Ma
Qingni Shen
Zhonghai Wu
Yang Zhang
SILM
32
228
0
01 Jun 2020
On the Difficulty of Membership Inference Attacks
Shahbaz Rezaei
Xin Liu
MIACV
22
13
0
27 May 2020
Two-Phase Multi-Party Computation Enabled Privacy-Preserving Federated Learning
Renuga Kanagavelu
Zengxiang Li
J. Samsudin
Yechao Yang
Feng Yang
Rick Siow Mong Goh
Mervyn Cheah
Praewpiraya Wiwatphonthana
K. Akkarajitsakul
Shangguang Wang
FedML
17
88
0
25 May 2020
Secure and Differentially Private Bayesian Learning on Distributed Data
Yeongjae Gil
Xiaoqian Jiang
Miran Kim
Junghye Lee
8
2
0
22 May 2020
Revisiting Membership Inference Under Realistic Assumptions
Bargav Jayaraman
Lingxiao Wang
Katherine Knipmeyer
Quanquan Gu
David Evans
24
147
0
21 May 2020
Scalable Privacy-Preserving Distributed Learning
D. Froelicher
J. Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean-Pierre Hubaux
FedML
22
68
0
19 May 2020
VerifyTL: Secure and Verifiable Collaborative Transfer Learning
Zhuo Ma
Jianfeng Ma
Yinbin Miao
Ximeng Liu
Wei Zheng
K. Choo
R. Deng
AAML
16
3
0
18 May 2020
An Overview of Privacy in Machine Learning
Emiliano De Cristofaro
SILM
33
83
0
18 May 2020
DAMIA: Leveraging Domain Adaptation as a Defense against Membership Inference Attacks
Hongwei Huang
Weiqi Luo
Guoqiang Zeng
J. Weng
Yue Zhang
Anjia Yang
AAML
17
24
0
16 May 2020
Differentially Private ADMM for Convex Distributed Learning: Improved Accuracy via Multi-Step Approximation
Zonghao Huang
Yanmin Gong
FedML
11
11
0
16 May 2020
Perturbing Inputs to Prevent Model Stealing
J. Grana
AAML
SILM
24
5
0
12 May 2020
A Secure Federated Learning Framework for 5G Networks
Yi Liu
Jia-Jie Peng
Jiawen Kang
Abdullah M. Iliyasu
Dusit Niyato
A. El-latif
FedML
17
195
0
12 May 2020
Defending Model Inversion and Membership Inference Attacks via Prediction Purification
Ziqi Yang
Bin Shao
Bohan Xuan
E. Chang
Fan Zhang
AAML
25
71
0
08 May 2020
MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient Estimation
Sanjay Kariyappa
A. Prakash
Moinuddin K. Qureshi
AAML
32
146
0
06 May 2020
When Machine Unlearning Jeopardizes Privacy
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
MIACV
36
218
0
05 May 2020
Secure Deep Graph Generation with Link Differential Privacy
Carl Yang
Haonan Wang
Ke Zhang
Liang Chen
Lichao Sun
30
40
0
01 May 2020
Differentially Private Federated Learning with Laplacian Smoothing
Zhicong Liang
Bao Wang
Quanquan Gu
Stanley Osher
Yuan Yao
FedML
20
7
0
01 May 2020
Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms
Mahdi Haghifam
Jeffrey Negrea
Ashish Khisti
Daniel M. Roy
Gintare Karolina Dziugaite
34
105
0
27 Apr 2020
Exploiting Defenses against GAN-Based Feature Inference Attacks in Federated Learning
Xinjian Luo
Xiangqi Zhu
FedML
78
25
0
27 Apr 2020
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
19
136
0
25 Apr 2020
Enhancing Privacy via Hierarchical Federated Learning
A. Wainakh
Alejandro Sánchez Guinea
Tim Grube
M. Mühlhäuser
FedML
28
45
0
23 Apr 2020
A Framework for Evaluating Gradient Leakage Attacks in Federated Learning
Wenqi Wei
Ling Liu
Margaret Loper
Ka-Ho Chow
Mehmet Emre Gursoy
Stacey Truex
Yanzhao Wu
FedML
26
147
0
22 Apr 2020
Have you forgotten? A method to assess if machine learning models have forgotten data
Xiao Liu
Sotirios A. Tsaftaris
FedML
OOD
MU
21
26
0
21 Apr 2020
DarkneTZ: Towards Model Privacy at the Edge using Trusted Execution Environments
Fan Mo
Ali Shahin Shamsabadi
Kleomenis Katevas
Soteris Demetriou
Ilias Leontiadis
Andrea Cavallaro
Hamed Haddadi
FedML
18
176
0
12 Apr 2020
PrivEdge: From Local to Distributed Private Training and Prediction
Ali Shahin Shamsabadi
Adria Gascon
Hamed Haddadi
Andrea Cavallaro
34
19
0
12 Apr 2020
FALCON: Honest-Majority Maliciously Secure Framework for Private Deep Learning
Sameer Wagh
Shruti Tople
Fabrice Benhamouda
E. Kushilevitz
Prateek Mittal
T. Rabin
FedML
33
295
0
05 Apr 2020
Private Knowledge Transfer via Model Distillation with Generative Adversarial Networks
Di Gao
Cheng Zhuo
14
4
0
05 Apr 2020
Information Leakage in Embedding Models
Congzheng Song
A. Raghunathan
MIACV
24
263
0
31 Mar 2020
Concentrated Differentially Private and Utility Preserving Federated Learning
Rui Hu
Yuanxiong Guo
Yanmin Gong
FedML
41
12
0
30 Mar 2020
Differentially Private Federated Learning for Resource-Constrained Internet of Things
Rui Hu
Yuanxiong Guo
E. Ratazzi
Yanmin Gong
FedML
33
17
0
28 Mar 2020
Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy
Fatemehsadat Mireshghallah
Mohammadkazem Taram
A. Jalali
Ahmed T. Elthakeb
Dean Tullsen
H. Esmaeilzadeh
14
12
0
26 Mar 2020
Corella: A Private Multi Server Learning Approach based on Correlated Queries
H. Ehteram
M. Maddah-ali
Mahtab Mirmohseni
14
0
0
26 Mar 2020
A Separation Result Between Data-oblivious and Data-aware Poisoning Attacks
Samuel Deng
Sanjam Garg
S. Jha
Saeed Mahloujifar
Mohammad Mahmoody
Abhradeep Thakurta
20
3
0
26 Mar 2020
Learn to Forget: Machine Unlearning via Neuron Masking
Yang Liu
Zhuo Ma
Ximeng Liu
Jian-wei Liu
Zhongyuan Jiang
Jianfeng Ma
Philip Yu
K. Ren
MU
22
61
0
24 Mar 2020
Systematic Evaluation of Privacy Risks of Machine Learning Models
Liwei Song
Prateek Mittal
MIACV
196
360
0
24 Mar 2020
Survey of Personalization Techniques for Federated Learning
V. Kulkarni
Milind Kulkarni
Aniruddha Pant
FedML
182
327
0
19 Mar 2020
Backdooring and Poisoning Neural Networks with Image-Scaling Attacks
Erwin Quiring
Konrad Rieck
AAML
54
70
0
19 Mar 2020
The Future of Digital Health with Federated Learning
Nicola Rieke
Jonny Hancox
Wenqi Li
Fausto Milletari
H. Roth
...
Ronald M. Summers
Andrew Trask
Daguang Xu
Maximilian Baust
M. Jorge Cardoso
OOD
174
1,713
0
18 Mar 2020
ENSEI: Efficient Secure Inference via Frequency-Domain Homomorphic Convolution for Privacy-Preserving Visual Recognition
S. Bian
Tianchen Wang
Masayuki Hiromoto
Yiyu Shi
Takashi Sato
FedML
29
30
0
11 Mar 2020
Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion
Qinqing Zheng
Jinshuo Dong
Qi Long
Weijie J. Su
FedML
17
23
0
10 Mar 2020
Towards Probabilistic Verification of Machine Unlearning
David M. Sommer
Liwei Song
Sameer Wagh
Prateek Mittal
AAML
13
71
0
09 Mar 2020
TEDL: A Text Encryption Method Based on Deep Learning
Xiang Li
Peng Wang
FedML
19
3
0
09 Mar 2020
Dynamic Backdoor Attacks Against Machine Learning Models
A. Salem
Rui Wen
Michael Backes
Shiqing Ma
Yang Zhang
AAML
48
271
0
07 Mar 2020
Threats to Federated Learning: A Survey
Lingjuan Lyu
Han Yu
Qiang Yang
FedML
204
436
0
04 Mar 2020
Marketplace for AI Models
Abhishek Kumar
Benjamin Finley
Tristan Braud
Sasu Tarkoma
Pan Hui
DiffM
18
14
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
Generating Higher-Fidelity Synthetic Datasets with Privacy Guarantees
Aleksei Triastcyn
Boi Faltings
17
5
0
02 Mar 2020
User-Level Privacy-Preserving Federated Learning: Analysis and Performance Optimization
Kang Wei
Jun Li
Ming Ding
Chuan Ma
Hang Su
Bo Zhang
H. Vincent Poor
FedML
25
11
0
29 Feb 2020
Membership Inference Attacks and Defenses in Classification Models
Jiacheng Li
Ninghui Li
Bruno Ribeiro
22
34
0
27 Feb 2020
Towards Utilizing Unlabeled Data in Federated Learning: A Survey and Prospective
Yilun Jin
Xiguang Wei
Yang Liu
Qiang Yang
FedML
22
63
0
26 Feb 2020
Previous
1
2
3
...
35
36
37
...
40
41
42
Next