Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05820
Cited By
Membership Inference Attacks against Machine Learning Models
18 October 2016
Reza Shokri
M. Stronati
Congzheng Song
Vitaly Shmatikov
SLR
MIALM
MIACV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Membership Inference Attacks against Machine Learning Models"
50 / 2,058 papers shown
Title
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification
Dominique Mercier
Adriano Lucieri
Mohsin Munir
Andreas Dengel
Sheraz Ahmed
21
11
0
29 Nov 2021
Machine unlearning via GAN
Kongyang Chen
Yao Huang
Yiwen Wang
MU
27
7
0
22 Nov 2021
Backdoor Attack through Frequency Domain
Tong Wang
Yuan Yao
Feng Xu
Shengwei An
Yangqiu Song
Ting Wang
AAML
29
33
0
22 Nov 2021
Enhanced Membership Inference Attacks against Machine Learning Models
Jiayuan Ye
Aadyaa Maddi
S. K. Murakonda
Vincent Bindschaedler
Reza Shokri
MIALM
MIACV
29
233
0
18 Nov 2021
How much do language models copy from their training data? Evaluating linguistic novelty in text generation using RAVEN
R. Thomas McCoy
P. Smolensky
Tal Linzen
Jianfeng Gao
Asli Celikyilmaz
SyDa
32
119
0
18 Nov 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
18
103
0
17 Nov 2021
To Trust or Not To Trust Prediction Scores for Membership Inference Attacks
Dominik Hintersdorf
Lukas Struppek
Kristian Kersting
26
14
0
17 Nov 2021
Training Data Reduction for Performance Models of Data Analytics Jobs in the Cloud
Jonathan Will
Onur Arslan
Jonathan Bader
Dominik Scheinert
L. Thamsen
32
4
0
15 Nov 2021
On the Importance of Difficulty Calibration in Membership Inference Attacks
Lauren Watson
Chuan Guo
Graham Cormode
Alex Sablayrolles
31
120
0
15 Nov 2021
Property Inference Attacks Against GANs
Junhao Zhou
Yufei Chen
Chao Shen
Yang Zhang
AAML
MIACV
35
52
0
15 Nov 2021
Eluding Secure Aggregation in Federated Learning via Model Inconsistency
Dario Pasquini
Danilo Francati
G. Ateniese
FedML
28
101
0
14 Nov 2021
Machine Learning Models Disclosure from Trusted Research Environments (TRE), Challenges and Opportunities
Esma Mansouri-Benssassi
Simon Rogers
Jim Q. Smith
F. Ritchie
E. Jefferson
27
5
0
10 Nov 2021
Lightweight machine unlearning in neural network
Kongyang Chen
Yiwen Wang
Yao Huang
MU
30
7
0
10 Nov 2021
Membership Inference Attacks Against Self-supervised Speech Models
Wei-Cheng Tseng
Wei-Tsung Kao
Hung-yi Lee
43
14
0
09 Nov 2021
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection
Shubhankar Mohapatra
Sajin Sasy
Xi He
Gautam Kamath
Om Thakkar
114
32
0
09 Nov 2021
Get a Model! Model Hijacking Attack Against Machine Learning Models
A. Salem
Michael Backes
Yang Zhang
AAML
30
28
0
08 Nov 2021
Reconstructing Training Data from Diverse ML Models by Ensemble Inversion
Qian Wang
Daniel Kurz
20
9
0
05 Nov 2021
Federated Learning Attacks Revisited: A Critical Discussion of Gaps, Assumptions, and Evaluation Setups
A. Wainakh
Ephraim Zimmer
Sandeep Subedi
Jens Keim
Tim Grube
Shankar Karuppayah
Alejandro Sánchez Guinea
Max Mühlhäuser
27
9
0
05 Nov 2021
Confidential Machine Learning Computation in Untrusted Environments: A Systems Security Perspective
Kha Dinh Duy
Taehyun Noh
Siwon Huh
Hojoon Lee
56
9
0
05 Nov 2021
Secure Machine Learning in the Cloud Using One Way Scrambling by Deconvolution
Yiftach Savransky
Roni Mateless
Gilad Katz
11
0
0
04 Nov 2021
3-D PET Image Generation with tumour masks using TGAN
R. V. Bergen
Jean-Francois Rajotte
F. Yousefirizi
I. Klyuzhin
Arman Rahmim
R. Ng
MedIm
27
7
0
02 Nov 2021
Revealing and Protecting Labels in Distributed Training
Trung D. Q. Dang
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Peter Chin
Franccoise Beaufays
20
26
0
31 Oct 2021
Efficient passive membership inference attack in federated learning
Oualid Zari
Chuan Xu
Giovanni Neglia
FedML
6
34
0
31 Oct 2021
Optimizing Secure Decision Tree Inference Outsourcing
Yifeng Zheng
Cong Wang
Ruochen Wang
Huayi Duan
Surya Nepal
21
6
0
31 Oct 2021
Backdoor Pre-trained Models Can Transfer to All
Lujia Shen
S. Ji
Xuhong Zhang
Jinfeng Li
Jing Chen
Jie Shi
Chengfang Fang
Jianwei Yin
Ting Wang
AAML
SILM
41
120
0
30 Oct 2021
10 Security and Privacy Problems in Large Foundation Models
Jinyuan Jia
Hongbin Liu
Neil Zhenqiang Gong
19
7
0
28 Oct 2021
Federated Learning with Heterogeneous Differential Privacy
Nasser Aldaghri
Hessam Mahdavifar
Ahmad Beirami
FedML
35
2
0
28 Oct 2021
Gradient Inversion with Generative Image Prior
Jinwoo Jeon
Jaechang Kim
Kangwook Lee
Sewoong Oh
Jungseul Ok
30
148
0
28 Oct 2021
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges
Mohammadreza Salehi
Hossein Mirzaei
Dan Hendrycks
Yixuan Li
M. Rohban
Mohammad Sabokrou
OOD
38
191
0
26 Oct 2021
CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning
Zhensu Sun
Xiaoning Du
Fu Song
Mingze Ni
Li Li
36
68
0
25 Oct 2021
On the Necessity of Auditable Algorithmic Definitions for Machine Unlearning
Anvith Thudi
Hengrui Jia
Ilia Shumailov
Nicolas Papernot
MU
13
142
0
22 Oct 2021
Federated Unlearning via Class-Discriminative Pruning
Junxiao Wang
Song Guo
Xin Xie
Heng Qi
MU
13
137
0
22 Oct 2021
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
39
14
0
22 Oct 2021
Locally Differentially Private Reinforcement Learning for Linear Mixture Markov Decision Processes
Chonghua Liao
Jiafan He
Quanquan Gu
29
17
0
19 Oct 2021
Adapting Membership Inference Attacks to GNN for Graph Classification: Approaches and Implications
Bang Wu
Xiangwen Yang
Shirui Pan
Xingliang Yuan
AAML
21
60
0
17 Oct 2021
DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy
Anda Cheng
Jiaxing Wang
Xi Sheryl Zhang
Qiang Chen
Peisong Wang
Jian Cheng
39
27
0
16 Oct 2021
Mitigating Membership Inference Attacks by Self-Distillation Through a Novel Ensemble Architecture
Xinyu Tang
Saeed Mahloujifar
Liwei Song
Virat Shejwalkar
Milad Nasr
Amir Houmansadr
Prateek Mittal
27
75
0
15 Oct 2021
Adaptive Differentially Private Empirical Risk Minimization
Xiaoxia Wu
Lingxiao Wang
Irina Cristali
Quanquan Gu
Rebecca Willett
45
6
0
14 Oct 2021
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
351
0
13 Oct 2021
On the Security Risks of AutoML
Ren Pang
Zhaohan Xi
S. Ji
Xiapu Luo
Ting Wang
AAML
27
10
0
12 Oct 2021
Sharing FANCI Features: A Privacy Analysis of Feature Extraction for DGA Detection
Benedikt Holmes
Arthur Drichel
Ulrike Meyer
34
1
0
12 Oct 2021
Generalization Techniques Empirically Outperform Differential Privacy against Membership Inference
Jiaxiang Liu
Simon Oya
Florian Kerschbaum
MIACV
22
9
0
11 Oct 2021
Continual Learning with Differential Privacy
Pradnya Desai
Phung Lai
Nhathai Phan
My T. Thai
32
7
0
11 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
135
120
0
07 Oct 2021
Federated Learning from Small Datasets
Michael Kamp
Jonas Fischer
Jilles Vreeken
FedML
32
26
0
07 Oct 2021
The Connection between Out-of-Distribution Generalization and Privacy of ML Models
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
21
7
0
07 Oct 2021
On the Privacy Risks of Deploying Recurrent Neural Networks in Machine Learning Models
Yunhao Yang
Parham Gohari
Ufuk Topcu
AAML
35
3
0
06 Oct 2021
How BPE Affects Memorization in Transformers
Eugene Kharitonov
Marco Baroni
Dieuwke Hupkes
180
32
0
06 Oct 2021
Inference Attacks Against Graph Neural Networks
Zhikun Zhang
Min Chen
Michael Backes
Yun Shen
Yang Zhang
MIACV
AAML
GNN
33
50
0
06 Oct 2021
Information-theoretic generalization bounds for black-box learning algorithms
Hrayr Harutyunyan
Maxim Raginsky
Greg Ver Steeg
Aram Galstyan
50
41
0
04 Oct 2021
Previous
1
2
3
...
27
28
29
...
40
41
42
Next