ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.04256
  4. Cited By
Assessing Threat of Adversarial Examples on Deep Neural Networks

Assessing Threat of Adversarial Examples on Deep Neural Networks

13 October 2016
Abigail Graese
Andras Rozsa
Terrance E. Boult
    AAML
ArXivPDFHTML

Papers citing "Assessing Threat of Adversarial Examples on Deep Neural Networks"

15 / 15 papers shown
Title
Defensive Distillation is Not Robust to Adversarial Examples
Defensive Distillation is Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
56
338
0
14 Jul 2016
Are Facial Attributes Adversarially Robust?
Are Facial Attributes Adversarially Robust?
Andras Rozsa
Manuel Günther
Ethan M. Rudd
Terrance E. Boult
AAML
CVBM
55
46
0
18 May 2016
Adversarial Diversity and Hard Positive Generation
Adversarial Diversity and Hard Positive Generation
Andras Rozsa
Ethan M. Rudd
Terrance E. Boult
81
257
0
05 May 2016
Practical Black-Box Attacks against Machine Learning
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,677
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
107
3,962
0
24 Nov 2015
Foveation-based Mechanisms Alleviate Adversarial Examples
Foveation-based Mechanisms Alleviate Adversarial Examples
Yan Luo
Xavier Boix
Gemma Roig
T. Poggio
Qi Zhao
AAML
65
170
0
19 Nov 2015
Adversarial Manipulation of Deep Representations
Adversarial Manipulation of Deep Representations
S. Sabour
Yanshuai Cao
Fartash Faghri
David J. Fleet
GAN
AAML
73
286
0
16 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep
  Neural Networks
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
102
3,072
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
162
3,271
0
05 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
465
43,658
0
17 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,547
0
01 Sep 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
274
14,711
0
20 Jun 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
Multi-column Deep Neural Networks for Image Classification
Multi-column Deep Neural Networks for Image Classification
D. Ciresan
U. Meier
Jürgen Schmidhuber
162
3,942
0
13 Feb 2012
1