ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02627
6
41

Learning Deep Generative Spatial Models for Mobile Robots

9 October 2016
Andrzej Pronobis
Rajesh P. N. Rao
    GAN
ArXivPDFHTML
Abstract

We propose a new probabilistic framework that allows mobile robots to autonomously learn deep, generative models of their environments that span multiple levels of abstraction. Unlike traditional approaches that combine engineered models for low-level features, geometry, and semantics, our approach leverages recent advances in Sum-Product Networks (SPNs) and deep learning to learn a single, universal model of the robot's spatial environment. Our model is fully probabilistic and generative, and represents a joint distribution over spatial information ranging from low-level geometry to semantic interpretations. Once learned, it is capable of solving a wide range of tasks: from semantic classification of places, uncertainty estimation, and novelty detection, to generation of place appearances based on semantic information and prediction of missing data in partial observations. Experiments on laser-range data from a mobile robot show that the proposed universal model obtains performance superior to state-of-the-art models fine-tuned to one specific task, such as Generative Adversarial Networks (GANs) or SVMs.

View on arXiv
Comments on this paper