ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02581
  4. Cited By
Variance-based regularization with convex objectives

Variance-based regularization with convex objectives

8 October 2016
John C. Duchi
Hongseok Namkoong
ArXivPDFHTML

Papers citing "Variance-based regularization with convex objectives"

12 / 12 papers shown
Title
Tapered Off-Policy REINFORCE: Stable and efficient reinforcement learning for LLMs
Tapered Off-Policy REINFORCE: Stable and efficient reinforcement learning for LLMs
Nicolas Le Roux
Marc G. Bellemare
Jonathan Lebensold
Arnaud Bergeron
Joshua Greaves
Alex Fréchette
Carolyne Pelletier
Eric Thibodeau-Laufer
Sándor Toth
Sam Work
OffRL
143
5
0
18 Mar 2025
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
121
3
0
04 Feb 2025
Semi-Variance Reduction for Fair Federated Learning
Semi-Variance Reduction for Fair Federated Learning
Saber Malekmohammadi
Yaoliang Yu
FedML
160
2
0
23 Jun 2024
Rejection via Learning Density Ratios
Rejection via Learning Density Ratios
Alexander Soen
Hisham Husain
Philip Schulz
Vu-Linh Nguyen
109
2
0
29 May 2024
Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus Sample Average Approximation: A Stochastic Dominance Perspective
Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus Sample Average Approximation: A Stochastic Dominance Perspective
Adam N. Elmachtoub
Henry Lam
Haofeng Zhang
Yunfan Zhao
144
6
0
13 Apr 2023
Federated Minimax Optimization: Improved Convergence Analyses and
  Algorithms
Federated Minimax Optimization: Improved Convergence Analyses and Algorithms
Pranay Sharma
Rohan Panda
Gauri Joshi
P. Varshney
FedML
86
49
0
09 Mar 2022
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
102
99
0
29 Oct 2020
Adaptive Sampling for Stochastic Risk-Averse Learning
Adaptive Sampling for Stochastic Risk-Averse Learning
Sebastian Curi
Kfir Y. Levy
Stefanie Jegelka
Andreas Krause
110
54
0
28 Oct 2019
Oracle-Based Robust Optimization via Online Learning
Oracle-Based Robust Optimization via Online Learning
A. Ben-Tal
Elad Hazan
Tomer Koren
Shie Mannor
63
75
0
25 Feb 2014
Learning without Concentration
Learning without Concentration
S. Mendelson
219
333
0
01 Jan 2014
Optimistic Rates for Learning with a Smooth Loss
Optimistic Rates for Learning with a Smooth Loss
Nathan Srebro
Karthik Sridharan
Ambuj Tewari
153
283
0
20 Sep 2010
Empirical Bernstein Bounds and Sample Variance Penalization
Empirical Bernstein Bounds and Sample Variance Penalization
Andreas Maurer
Massimiliano Pontil
375
542
0
21 Jul 2009
1