Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02527
Cited By
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
8 October 2016
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Optimization: Distributed Machine Learning for On-Device Intelligence"
33 / 733 papers shown
Title
Expanding the Reach of Federated Learning by Reducing Client Resource Requirements
S. Caldas
Jakub Konecný
H. B. McMahan
Ameet Talwalkar
18
441
0
18 Dec 2018
Distributed Learning with Sparse Communications by Identification
Dmitry Grishchenko
F. Iutzeler
J. Malick
Massih-Reza Amini
11
19
0
10 Dec 2018
Applied Federated Learning: Improving Google Keyboard Query Suggestions
Timothy Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
F. Beaufays
FedML
20
615
0
07 Dec 2018
Wireless Network Intelligence at the Edge
Jihong Park
S. Samarakoon
M. Bennis
Mérouane Debbah
21
518
0
07 Dec 2018
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
Zhibo Wang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
FedML
16
776
0
03 Dec 2018
Joint Service Pricing and Cooperative Relay Communication for Federated Learning
Shaohan Feng
Dusit Niyato
Ping Wang
Dong In Kim
Ying-Chang Liang
FedML
30
106
0
29 Nov 2018
Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data
Eunjeong Jeong
Seungeun Oh
Hyesung Kim
Jihong Park
M. Bennis
Seong-Lyun Kim
FedML
17
591
0
28 Nov 2018
FADL:Federated-Autonomous Deep Learning for Distributed Electronic Health Record
Dianbo Liu
Timothy A. Miller
R. Sayeed
K. Mandl
FedML
OOD
15
59
0
28 Nov 2018
Federated Learning for Keyword Spotting
David Leroy
A. Coucke
Thibaut Lavril
Thibault Gisselbrecht
Joseph Dureau
FedML
13
282
0
09 Oct 2018
Security and Privacy Issues in Deep Learning
Ho Bae
Jaehee Jang
Dahuin Jung
Hyemi Jang
Heonseok Ha
Hyungyu Lee
Sungroh Yoon
SILM
MIACV
40
77
0
31 Jul 2018
Blockchain as a Service: A Decentralized and Secure Computing Paradigm
G. Mendis
Yifu Wu
Jin Wei
Moein Sabounchi
Rigoberto Roche'
19
21
0
05 Jul 2018
A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm
Konstantin Mishchenko
F. Iutzeler
J. Malick
11
22
0
25 Jun 2018
Defending Against Saddle Point Attack in Byzantine-Robust Distributed Learning
Dong Yin
Yudong Chen
Kannan Ramchandran
Peter L. Bartlett
FedML
29
97
0
14 Jun 2018
Accelerated Randomized Coordinate Descent Algorithms for Stochastic Optimization and Online Learning
Akshita Bhandari
C. Singh
ODL
12
0
0
05 Jun 2018
How Much Are You Willing to Share? A "Poker-Styled" Selective Privacy Preserving Framework for Recommender Systems
Manoj Reddy Dareddy
Ariyam Das
Junghoo Cho
C. Zaniolo
17
0
0
04 Jun 2018
Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance
Cong Xie
Oluwasanmi Koyejo
Indranil Gupta
FedML
8
46
0
25 May 2018
Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning
Tribhuvanesh Orekondy
Seong Joon Oh
Yang Zhang
Bernt Schiele
Mario Fritz
PICV
FedML
357
37
0
15 May 2018
Federated Learning for Ultra-Reliable Low-Latency V2V Communications
S. Samarakoon
M. Bennis
Walid Saad
Merouane Debbah
11
226
0
11 May 2018
A Survey on Consensus Mechanisms and Mining Strategy Management in Blockchain Networks
Wenbo Wang
D. Hoang
Peizhao Hu
Zehui Xiong
Dusit Niyato
Ping Wang
Yonggang Wen
Dong In Kim
24
736
0
07 May 2018
Machine Learning for Wireless Connectivity and Security of Cellular-Connected UAVs
Ursula Challita
A. Ferdowsi
Mingzhe Chen
Walid Saad
11
171
0
15 Apr 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
144
1,687
0
14 Apr 2018
Sometimes You Want to Go Where Everybody Knows your Name
Reuben Brasher
Nat Roth
Justin Wagle
25
0
0
30 Jan 2018
Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption
Stephen Hardy
Wilko Henecka
Hamish Ivey-Law
Richard Nock
Giorgio Patrini
Guillaume Smith
Brian Thorne
FedML
19
531
0
29 Nov 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
33
127
0
11 Sep 2017
Variance-Reduced Stochastic Learning by Networked Agents under Random Reshuffling
Kun Yuan
Bicheng Ying
Jiageng Liu
Ali H. Sayed
11
4
0
04 Aug 2017
ProjectionNet: Learning Efficient On-Device Deep Networks Using Neural Projections
Sujith Ravi
13
62
0
02 Aug 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
23
38
0
04 Jul 2017
Glimmers: Resolving the Privacy/Trust Quagmire
David Lie
Petros Maniatis
20
14
0
24 Feb 2017
Randomized Distributed Mean Estimation: Accuracy vs Communication
Jakub Konecný
Peter Richtárik
FedML
17
101
0
22 Nov 2016
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
36
4,588
0
18 Oct 2016
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
11
56
0
30 Mar 2016
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
90
736
0
19 Mar 2014
Optimal Distributed Online Prediction using Mini-Batches
O. Dekel
Ran Gilad-Bachrach
Ohad Shamir
Lin Xiao
177
683
0
07 Dec 2010
Previous
1
2
3
...
13
14
15