ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02255
  4. Cited By
Learning Grimaces by Watching TV

Learning Grimaces by Watching TV

7 October 2016
Samuel Albanie
Andrea Vedaldi
    CVBM
ArXivPDFHTML

Papers citing "Learning Grimaces by Watching TV"

9 / 9 papers shown
Title
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.6K
192,638
0
10 Dec 2015
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images
Aravindh Mahendran
Andrea Vedaldi
FAtt
61
532
0
07 Dec 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
299
13,079
0
12 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
376
43,154
0
11 Feb 2015
MatConvNet - Convolutional Neural Networks for MATLAB
MatConvNet - Convolutional Neural Networks for MATLAB
Andrea Vedaldi
Karel Lenc
279
2,947
0
15 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.1K
99,991
0
04 Sep 2014
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.2K
39,383
0
01 Sep 2014
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Return of the Devil in the Details: Delving Deep into Convolutional Nets
Ken Chatfield
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
197
3,414
0
14 May 2014
Challenges in Representation Learning: A report on three machine
  learning contests
Challenges in Representation Learning: A report on three machine learning contests
Ian Goodfellow
D. Erhan
P. Carrier
Aaron Courville
M. Berk Mirza
...
Jingjing Xie
Lukasz Romaszko
Bing Xu
Chuang Zhang
Yoshua Bengio
CVBM
112
1,605
0
01 Jul 2013
1