Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.05807
Cited By
v1
v2 (latest)
Inherent Trade-Offs in the Fair Determination of Risk Scores
19 September 2016
Jon M. Kleinberg
S. Mullainathan
Manish Raghavan
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Inherent Trade-Offs in the Fair Determination of Risk Scores"
50 / 747 papers shown
Title
Oblivious Data for Fairness with Kernels
Steffen Grunewalder
A. Khaleghi
55
6
0
07 Feb 2020
Joint Optimization of AI Fairness and Utility: A Human-Centered Approach
Yunfeng Zhang
Rachel K. E. Bellamy
Kush R. Varshney
68
38
0
05 Feb 2020
Factors Influencing Perceived Fairness in Algorithmic Decision-Making: Algorithm Outcomes, Development Procedures, and Individual Differences
Ruotong Wang
F. M. Harper
Haiyi Zhu
FaML
66
187
0
27 Jan 2020
Privacy for All: Demystify Vulnerability Disparity of Differential Privacy against Membership Inference Attack
Bo Zhang
Ruotong Yu
Haipei Sun
Yanying Li
Jun Xu
Wendy Hui Wang
AAML
59
13
0
24 Jan 2020
Algorithmic Fairness
Dana Pessach
E. Shmueli
FaML
102
395
0
21 Jan 2020
Stereotypical Bias Removal for Hate Speech Detection Task using Knowledge-based Generalizations
Pinkesh Badjatiya
Manish Gupta
Vasudeva Varma
78
105
0
15 Jan 2020
Fairness in Learning-Based Sequential Decision Algorithms: A Survey
Xueru Zhang
M. Liu
FaML
157
51
0
14 Jan 2020
Algorithmic Fairness from a Non-ideal Perspective
S. Fazelpour
Zachary Chase Lipton
FaML
66
103
0
08 Jan 2020
On Consequentialism and Fairness
Dallas Card
Noah A. Smith
FaML
70
11
0
02 Jan 2020
Leveraging Semi-Supervised Learning for Fairness using Neural Networks
Vahid Noroozi
S. Bahaadini
Samira Sheikhi
Nooshin Mojab
Philip S. Yu
129
7
0
31 Dec 2019
Teaching Responsible Data Science: Charting New Pedagogical Territory
Julia Stoyanovich
Armanda Lewis
49
39
0
23 Dec 2019
Learning from Discriminatory Training Data
Przemyslaw A. Grabowicz
Nicholas Perello
Kenta Takatsu
FaML
87
1
0
17 Dec 2019
Towards Fairer Datasets: Filtering and Balancing the Distribution of the People Subtree in the ImageNet Hierarchy
Kaiyu Yang
Klint Qinami
Li Fei-Fei
Jia Deng
Olga Russakovsky
132
325
0
16 Dec 2019
On the Apparent Conflict Between Individual and Group Fairness
Reuben Binns
FaML
115
316
0
14 Dec 2019
Measurement and Fairness
Abigail Z. Jacobs
Hanna M. Wallach
90
404
0
11 Dec 2019
Group Fairness in Bandit Arm Selection
Candice Schumann
Zhi Lang
Nicholas Mattei
John P. Dickerson
FaML
90
15
0
09 Dec 2019
Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?
Avrim Blum
Kevin Stangl
FaML
69
87
0
02 Dec 2019
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
Shiori Sagawa
Pang Wei Koh
Tatsunori B. Hashimoto
Percy Liang
OOD
114
1,253
0
20 Nov 2019
Dynamic Modeling and Equilibria in Fair Decision Making
Joshua H. Williams
J. Zico Kolter
FaML
78
14
0
15 Nov 2019
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
Zhu Li
Adrián Pérez-Suay
Gustau Camps-Valls
Dino Sejdinovic
FaML
104
22
0
11 Nov 2019
A Human-in-the-loop Framework to Construct Context-aware Mathematical Notions of Outcome Fairness
Mohammad Yaghini
A. Krause
Hoda Heidari
FaML
59
22
0
08 Nov 2019
DADI: Dynamic Discovery of Fair Information with Adversarial Reinforcement Learning
Michiel A. Bakker
Duy Patrick Tu
Humberto Riverón Valdés
Krishna P. Gummadi
Kush R. Varshney
Adrian Weller
Alex Pentland
75
5
0
30 Oct 2019
Learning Fair and Interpretable Representations via Linear Orthogonalization
Yuzi He
Keith Burghardt
Kristina Lerman
FaML
36
4
0
28 Oct 2019
Conditional Learning of Fair Representations
Han Zhao
Amanda Coston
T. Adel
Geoffrey J. Gordon
FaML
87
109
0
16 Oct 2019
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
105
184
0
14 Oct 2019
Keeping Designers in the Loop: Communicating Inherent Algorithmic Trade-offs Across Multiple Objectives
Bowen Yu
Ye Yuan
Loren G. Terveen
Zhiwei Steven Wu
Jodi Forlizzi
Haiyi Zhu
75
2
0
07 Oct 2019
Group-based Fair Learning Leads to Counter-intuitive Predictions
Ofir Nachum
Heinrich Jiang
FaML
45
2
0
04 Oct 2019
This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology
D. Mulligan
Joshua A. Kroll
Nitin Kohli
Richmond Y. Wong
104
74
0
26 Sep 2019
Bias In, Bias Out? Evaluating the Folk Wisdom
Ashesh Rambachan
J. Roth
FaML
60
31
0
18 Sep 2019
Advancing subgroup fairness via sleeping experts
Avrim Blum
Thodoris Lykouris
FedML
68
37
0
18 Sep 2019
Predictive Multiplicity in Classification
Charles Marx
Flavio du Pin Calmon
Berk Ustun
136
147
0
14 Sep 2019
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
64
11
0
09 Sep 2019
Quantifying Infra-Marginality and Its Trade-off with Group Fairness
Arpita Biswas
Siddharth Barman
Amit Deshpande
Amit Sharma
32
3
0
03 Sep 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
607
4,429
0
23 Aug 2019
Towards Reducing Biases in Combining Multiple Experts Online
Yi Sun
Iván Díaz
Alfredo Cuesta-Infante
K. Veeramachaneni
FaML
35
0
0
19 Aug 2019
With Malice Towards None: Assessing Uncertainty via Equalized Coverage
Yaniv Romano
Rina Foygel Barber
C. Sabatti
Emmanuel J. Candès
UQCV
158
74
0
15 Aug 2019
Fair quantile regression
Dana Yang
John D. Lafferty
D. Pollard
51
6
0
19 Jul 2019
A Causal Bayesian Networks Viewpoint on Fairness
Silvia Chiappa
William S. Isaac
FaML
84
63
0
15 Jul 2019
Counterfactual Reasoning for Fair Clinical Risk Prediction
Stephen Pfohl
Tony Duan
D. Ding
N. Shah
OOD
CML
71
58
0
14 Jul 2019
Operationalizing Individual Fairness with Pairwise Fair Representations
Preethi Lahoti
Krishna P. Gummadi
Gerhard Weikum
FaML
115
102
0
02 Jul 2019
The Sensitivity of Counterfactual Fairness to Unmeasured Confounding
Niki Kilbertus
Philip J. Ball
Matt J. Kusner
Adrian Weller
Ricardo M. A. Silva
93
58
0
01 Jul 2019
Training individually fair ML models with Sensitive Subspace Robustness
Mikhail Yurochkin
Amanda Bower
Yuekai Sun
FaML
OOD
88
120
0
28 Jun 2019
Learning Fair Representations for Kernel Models
Zilong Tan
Samuel Yeom
Matt Fredrikson
Ameet Talwalkar
FaML
119
25
0
27 Jun 2019
Fairness criteria through the lens of directed acyclic graphical models
Benjamin R. Baer
Daniel E. Gilbert
M. Wells
FaML
72
6
0
26 Jun 2019
The Cost of a Reductions Approach to Private Fair Optimization
Daniel Alabi
81
3
0
23 Jun 2019
FlipTest: Fairness Testing via Optimal Transport
Emily Black
Samuel Yeom
Matt Fredrikson
162
96
0
21 Jun 2019
Mitigating Gender Bias in Natural Language Processing: Literature Review
Tony Sun
Andrew Gaut
Shirlyn Tang
Yuxin Huang
Mai Elsherief
Jieyu Zhao
Diba Mirza
E. Belding-Royer
Kai-Wei Chang
William Yang Wang
AI4CE
138
563
0
21 Jun 2019
Inherent Tradeoffs in Learning Fair Representations
Han Zhao
Geoffrey J. Gordon
FaML
80
218
0
19 Jun 2019
Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation
Han Zhao
Jianfeng Chi
Yuan Tian
Geoffrey J. Gordon
MIACV
51
2
0
19 Jun 2019
The Price of Local Fairness in Multistage Selection
V. Emelianov
G. Arvanitakis
Nicolas Gast
Krishna P. Gummadi
Patrick Loiseau
62
18
0
15 Jun 2019
Previous
1
2
3
...
11
12
13
14
15
Next