ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.03795
  4. Cited By
Towards Deep Compositional Networks

Towards Deep Compositional Networks

13 September 2016
Domen Tabernik
Matej Kristan
J. Wyatt
A. Leonardis
    CoGe
ArXivPDFHTML

Papers citing "Towards Deep Compositional Networks"

6 / 6 papers shown
Title
Fully trainable Gaussian derivative convolutional layer
Fully trainable Gaussian derivative convolutional layer
Valentin Penaud-Polge
Santiago Velasco-Forero
Jesús Angulo
21
9
0
18 Jul 2022
LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single
  Image Super-Resolution and Beyond
LAPAR: Linearly-Assembled Pixel-Adaptive Regression Network for Single Image Super-Resolution and Beyond
Wenbo Li
Kun Zhou
Lu Qi
Nianjuan Jiang
Jiangbo Lu
Jiaya Jia
21
167
0
21 May 2021
Using latent space regression to analyze and leverage compositionality
  in GANs
Using latent space regression to analyze and leverage compositionality in GANs
Lucy Chai
Jonas Wulff
Phillip Isola
GAN
40
75
0
18 Mar 2021
Combining Compositional Models and Deep Networks For Robust Object
  Classification under Occlusion
Combining Compositional Models and Deep Networks For Robust Object Classification under Occlusion
Adam Kortylewski
Qing Liu
Huiyu Wang
Zhishuai Zhang
Alan Yuille
11
62
0
28 May 2019
Spatially-Adaptive Filter Units for Compact and Efficient Deep Neural
  Networks
Spatially-Adaptive Filter Units for Compact and Efficient Deep Neural Networks
Domen Tabernik
Matej Kristan
A. Leonardis
16
22
0
20 Feb 2019
Teaching Compositionality to CNNs
Teaching Compositionality to CNNs
Austin Stone
Hua-Yan Wang
Michael Stark
Yi Liu
D. Phoenix
Dileep George
CoGe
13
54
0
14 Jun 2017
1