Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.02943
Cited By
Stealing Machine Learning Models via Prediction APIs
9 September 2016
Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
SILM
MLAU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stealing Machine Learning Models via Prediction APIs"
50 / 344 papers shown
Title
Finding Meaningful Distributions of ML Black-boxes under Forensic Investigation
Jiyi Zhang
Hansheng Fang
Hwee Kuan Lee
E. Chang
35
1
0
10 May 2023
GTree: GPU-Friendly Privacy-preserving Decision Tree Training and Inference
Qifan Wang
Shujie Cui
Lei Zhou
Ye Dong
Jianli Bai
Yun Sing Koh
Giovanni Russello
33
0
0
01 May 2023
Identifying Appropriate Intellectual Property Protection Mechanisms for Machine Learning Models: A Systematization of Watermarking, Fingerprinting, Model Access, and Attacks
Isabell Lederer
Rudolf Mayer
Andreas Rauber
34
19
0
22 Apr 2023
GrOVe: Ownership Verification of Graph Neural Networks using Embeddings
Asim Waheed
Vasisht Duddu
Nadarajah Asokan
40
9
0
17 Apr 2023
On the Adversarial Inversion of Deep Biometric Representations
Gioacchino Tangari
Shreesh Keskar
Hassan Jameel Asghar
Dali Kaafar
AAML
47
2
0
12 Apr 2023
Robust and IP-Protecting Vertical Federated Learning against Unexpected Quitting of Parties
Jingwei Sun
Zhixu Du
Anna Dai
Saleh Baghersalimi
Alireza Amirshahi
David Atienza
Yiran Chen
FedML
21
8
0
28 Mar 2023
Model Extraction Attacks on Split Federated Learning
Jingtao Li
Adnan Siraj Rakin
Xing Chen
Li Yang
Zhezhi He
Deliang Fan
C. Chakrabarti
FedML
65
5
0
13 Mar 2023
Decision-BADGE: Decision-based Adversarial Batch Attack with Directional Gradient Estimation
Geunhyeok Yu
Minwoo Jeon
Hyoseok Hwang
AAML
26
1
0
09 Mar 2023
Students Parrot Their Teachers: Membership Inference on Model Distillation
Matthew Jagielski
Milad Nasr
Christopher A. Choquette-Choo
Katherine Lee
Nicholas Carlini
FedML
46
21
0
06 Mar 2023
Adversarial Sampling for Fairness Testing in Deep Neural Network
Tosin Ige
William Marfo
Justin Tonkinson
Sikiru Adewale
Bolanle Hafiz Matti
OOD
26
9
0
06 Mar 2023
Adversarial Attacks on Machine Learning in Embedded and IoT Platforms
Christian Westbrook
S. Pasricha
AAML
25
3
0
03 Mar 2023
AdvRain: Adversarial Raindrops to Attack Camera-based Smart Vision Systems
Amira Guesmi
Muhammad Abdullah Hanif
Mohamed Bennai
AAML
56
17
0
02 Mar 2023
A Plot is Worth a Thousand Words: Model Information Stealing Attacks via Scientific Plots
Boyang Zhang
Xinlei He
Yun Shen
Tianhao Wang
Yang Zhang
AAML
37
2
0
23 Feb 2023
AutoML in The Wild: Obstacles, Workarounds, and Expectations
Yuan Sun
Qiurong Song
Xinning Gui
Fenglong Ma
Ting Wang
26
13
0
21 Feb 2023
Digital Privacy Under Attack: Challenges and Enablers
Baobao Song
Mengyue Deng
Shiva Raj Pokhrel
Qiujun Lan
R. Doss
Gang Li
AAML
39
3
0
18 Feb 2023
AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models
Abdullah Çaglar Öksüz
Anisa Halimi
Erman Ayday
ELM
AAML
23
2
0
04 Feb 2023
A Survey on Digital Twins: Architecture, Enabling Technologies, Security and Privacy, and Future Prospects
Yuntao Wang
Zhou Su
Shaolong Guo
Minghui Dai
Tom H. Luan
Yiliang Liu
29
108
0
31 Jan 2023
Selecting Models based on the Risk of Damage Caused by Adversarial Attacks
Jona Klemenc
Holger Trittenbach
AAML
32
1
0
28 Jan 2023
Threats, Vulnerabilities, and Controls of Machine Learning Based Systems: A Survey and Taxonomy
Yusuke Kawamoto
Kazumasa Miyake
K. Konishi
Y. Oiwa
29
4
0
18 Jan 2023
IronForge: An Open, Secure, Fair, Decentralized Federated Learning
Guangsheng Yu
Xu Wang
Caijun Sun
Qin Wang
Ping Yu
Wei Ni
R. Liu
Xiwei Xu
OOD
AI4CE
29
25
0
07 Jan 2023
A Comparative Study of Image Disguising Methods for Confidential Outsourced Learning
Sagar Sharma
Yuechun Gu
Keke Chen
39
0
0
31 Dec 2022
"Real Attackers Don't Compute Gradients": Bridging the Gap Between Adversarial ML Research and Practice
Giovanni Apruzzese
Hyrum S. Anderson
Savino Dambra
D. Freeman
Fabio Pierazzi
Kevin A. Roundy
AAML
38
75
0
29 Dec 2022
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
A. Salem
Giovanni Cherubin
David Evans
Boris Köpf
Andrew Paverd
Anshuman Suri
Shruti Tople
Santiago Zanella Béguelin
52
35
0
21 Dec 2022
Learned Systems Security
R. Schuster
Jinyi Zhou
Thorsten Eisenhofer
Paul Grubbs
Nicolas Papernot
AAML
24
2
0
20 Dec 2022
Review of security techniques for memristor computing systems
Minhui Zou
Nan Du
Shahar Kvatinsky
AAML
24
7
0
19 Dec 2022
A Survey on Reinforcement Learning Security with Application to Autonomous Driving
Ambra Demontis
Maura Pintor
Christian Scano
Kathrin Grosse
Hsiao-Ying Lin
Chengfang Fang
Battista Biggio
Fabio Roli
AAML
49
4
0
12 Dec 2022
Confidential High-Performance Computing in the Public Cloud
Keke Chen
FedML
19
6
0
05 Dec 2022
Model Extraction Attack against Self-supervised Speech Models
Tsung-Yuan Hsu
Chen-An Li
Tung-Yu Wu
Hung-yi Lee
32
1
0
29 Nov 2022
Federated Learning Attacks and Defenses: A Survey
Yao Chen
Yijie Gui
Hong Lin
Wensheng Gan
Yongdong Wu
FedML
49
29
0
27 Nov 2022
A Brief Overview of AI Governance for Responsible Machine Learning Systems
Navdeep Gill
Abhishek Mathur
Marcos V. Conde
29
5
0
21 Nov 2022
On the Vulnerability of Data Points under Multiple Membership Inference Attacks and Target Models
Mauro Conti
Jiaxin Li
S. Picek
MIALM
37
2
0
28 Oct 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
41
2
0
28 Oct 2022
Private and Reliable Neural Network Inference
Nikola Jovanović
Marc Fischer
Samuel Steffen
Martin Vechev
27
14
0
27 Oct 2022
Desiderata for next generation of ML model serving
Sherif Akoush
Andrei Paleyes
A. V. Looveren
Clive Cox
38
5
0
26 Oct 2022
New data poison attacks on machine learning classifiers for mobile exfiltration
M. A. Ramírez
Sangyoung Yoon
Ernesto Damiani
H. A. Hamadi
C. Ardagna
Nicola Bena
Young-Ji Byon
Tae-Yeon Kim
C. Cho
C. Yeun
AAML
38
4
0
20 Oct 2022
Emerging Threats in Deep Learning-Based Autonomous Driving: A Comprehensive Survey
Huiyun Cao
Wenlong Zou
Yinkun Wang
Ting Song
Mengjun Liu
AAML
56
5
0
19 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
48
20
0
18 Oct 2022
Industry-Scale Orchestrated Federated Learning for Drug Discovery
M. Oldenhof
G. Ács
Balázs Pejó
A. Schuffenhauer
Nicholas Holway
...
Yves Moreau
Ola Engkvist
Hugo Ceulemans
Camille Marini
M. Galtier
FedML
43
38
0
17 Oct 2022
Decompiling x86 Deep Neural Network Executables
Zhibo Liu
Yuanyuan Yuan
Shuai Wang
Xiaofei Xie
Lei Ma
AAML
45
13
0
03 Oct 2022
Privacy Attacks Against Biometric Models with Fewer Samples: Incorporating the Output of Multiple Models
Sohaib Ahmad
Benjamin Fuller
Kaleel Mahmood
AAML
27
0
0
22 Sep 2022
CATER: Intellectual Property Protection on Text Generation APIs via Conditional Watermarks
Xuanli He
Qiongkai Xu
Yi Zeng
Lingjuan Lyu
Fangzhao Wu
Jiwei Li
R. Jia
WaLM
188
72
0
19 Sep 2022
HAPI: A Large-scale Longitudinal Dataset of Commercial ML API Predictions
Lingjiao Chen
Zhihua Jin
Sabri Eyuboglu
Christopher Ré
Matei A. Zaharia
James Zou
56
9
0
18 Sep 2022
Dataset Inference for Self-Supervised Models
Adam Dziedzic
Haonan Duan
Muhammad Ahmad Kaleem
Nikita Dhawan
Jonas Guan
Yannis Cattan
Franziska Boenisch
Nicolas Papernot
42
26
0
16 Sep 2022
Model Inversion Attacks against Graph Neural Networks
Zaixin Zhang
Qi Liu
Zhenya Huang
Hao Wang
Cheekong Lee
Enhong
AAML
28
35
0
16 Sep 2022
SEEK: model extraction attack against hybrid secure inference protocols
Si-Quan Chen
Junfeng Fan
MIACV
16
2
0
14 Sep 2022
Why So Toxic? Measuring and Triggering Toxic Behavior in Open-Domain Chatbots
Waiman Si
Michael Backes
Jeremy Blackburn
Emiliano De Cristofaro
Gianluca Stringhini
Savvas Zannettou
Yang Zhang
41
58
0
07 Sep 2022
Joint Linear and Nonlinear Computation across Functions for Efficient Privacy-Preserving Neural Network Inference
Qiao Zhang
Tao Xiang
Chunsheng Xin
Biwen Chen
Hongyi Wu
39
1
0
04 Sep 2022
Membership Inference Attacks by Exploiting Loss Trajectory
Yiyong Liu
Zhengyu Zhao
Michael Backes
Yang Zhang
27
98
0
31 Aug 2022
Demystifying Arch-hints for Model Extraction: An Attack in Unified Memory System
Zhendong Wang
Xiaoming Zeng
Xulong Tang
Danfeng Zhang
Xingbo Hu
Yang Hu
AAML
MIACV
FedML
32
6
0
29 Aug 2022
Private, Efficient, and Accurate: Protecting Models Trained by Multi-party Learning with Differential Privacy
Wenqiang Ruan
Ming Xu
Wenjing Fang
Li Wang
Lei Wang
Wei Han
42
12
0
18 Aug 2022
Previous
1
2
3
4
5
6
7
Next