Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.02815
Cited By
By-passing the Kohn-Sham equations with machine learning
9 September 2016
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"By-passing the Kohn-Sham equations with machine learning"
8 / 8 papers shown
Title
Predicting fermionic densities using a Projected Quantum Kernel method
Francesco Perciavalle
Francesco Plastina
Michele Pisarra
Nicola Lo Gullo
111
0
0
18 Apr 2025
Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
Sergei Manzhos
Johann Luder
Manabu Ihara
Manabu Ihara
56
0
0
08 Feb 2025
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
131
687
0
06 Dec 2017
Understanding Kernel Ridge Regression: Common behaviors from simple functions to density functionals
Kevin Vu
John C. Snyder
Li Li
M. Rupp
Brandon F. Chen
Tarek Khelif
K. Müller
K. Burke
28
100
0
16 Jan 2015
Understanding Machine-learned Density Functionals
Li Li
John C. Snyder
I. Pelaschier
Jessica Huang
U. Niranjan
Paul Duncan
M. Rupp
K. Müller
K. Burke
40
151
0
04 Apr 2014
Orbital-free Bond Breaking via Machine Learning
John C. Snyder
M. Rupp
K. Hansen
Leo Blooston
K. Müller
K. Burke
51
115
0
07 Jun 2013
Finding Density Functionals with Machine Learning
John C. Snyder
M. Rupp
K. Hansen
K. Müller
K. Burke
92
476
0
22 Dec 2011
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
120
1,581
0
12 Sep 2011
1