Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.08967
Cited By
Robustness of classifiers: from adversarial to random noise
31 August 2016
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Robustness of classifiers: from adversarial to random noise"
50 / 78 papers shown
Title
Quantum Support Vector Regression for Robust Anomaly Detection
Kilian Tscharke
Maximilian Wendlinger
Sebastian Issel
Pascal Debus
AAML
44
0
0
02 May 2025
Investigating Weight-Perturbed Deep Neural Networks With Application in Iris Presentation Attack Detection
Renu Sharma
Redwan Sony
Arun Ross
AAML
21
3
0
21 Nov 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
42
3
0
20 Aug 2023
A Theoretical Perspective on Subnetwork Contributions to Adversarial Robustness
Jovon Craig
Joshua Andle
Theodore S. Nowak
Salimeh Yasaei Sekeh
AAML
53
0
0
07 Jul 2023
Boosting Adversarial Attacks by Leveraging Decision Boundary Information
Boheng Zeng
LianLi Gao
Qilong Zhang
Chaoqun Li
JingKuan Song
Shuaiqi Jing
AAML
25
2
0
10 Mar 2023
Uncertainty Injection: A Deep Learning Method for Robust Optimization
W. Cui
Wei Yu
UQCV
OOD
27
6
0
23 Feb 2023
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs
Helene Orsini
Hongyan Bao
Yujun Zhou
Xiangrui Xu
Yufei Han
Longyang Yi
Wei Wang
Xin Gao
Xiangliang Zhang
AAML
44
1
0
13 Dec 2022
Adversarial Detection by Approximation of Ensemble Boundary
T. Windeatt
AAML
26
0
0
18 Nov 2022
There is more than one kind of robustness: Fooling Whisper with adversarial examples
R. Olivier
Bhiksha Raj
AAML
40
12
0
26 Oct 2022
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
40
1
0
12 Oct 2022
DeltaBound Attack: Efficient decision-based attack in low queries regime
L. Rossi
AAML
20
0
0
01 Oct 2022
Mixed-Precision Neural Networks: A Survey
M. Rakka
M. Fouda
Pramod P. Khargonekar
Fadi J. Kurdahi
MQ
27
11
0
11 Aug 2022
Discriminator-Weighted Offline Imitation Learning from Suboptimal Demonstrations
Haoran Xu
Xianyuan Zhan
Honglei Yin
Huiling Qin
OffRL
26
66
0
20 Jul 2022
Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
AAML
21
5
0
12 May 2022
Co-Teaching for Unsupervised Domain Adaptation and Expansion
Kaibin Tian
Qijie Wei
Xirong Li
32
1
0
04 Apr 2022
Stochastic Perturbations of Tabular Features for Non-Deterministic Inference with Automunge
Nicholas J. Teague
AAML
33
1
0
18 Feb 2022
On Distinctive Properties of Universal Perturbations
Sung Min Park
K. Wei
Kai Y. Xiao
Jungshian Li
A. Madry
AAML
24
2
0
31 Dec 2021
On the Adversarial Robustness of Causal Algorithmic Recourse
Ricardo Dominguez-Olmedo
Amir-Hossein Karimi
Bernhard Schölkopf
46
63
0
21 Dec 2021
Editing a classifier by rewriting its prediction rules
Shibani Santurkar
Dimitris Tsipras
Mahalaxmi Elango
David Bau
Antonio Torralba
A. Madry
KELM
186
89
0
02 Dec 2021
Back in Black: A Comparative Evaluation of Recent State-Of-The-Art Black-Box Attacks
Kaleel Mahmood
Rigel Mahmood
Ethan Rathbun
Marten van Dijk
AAML
19
22
0
29 Sep 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
Evaluating the Robustness of Neural Language Models to Input Perturbations
M. Moradi
Matthias Samwald
AAML
50
96
0
27 Aug 2021
Context-aware Adversarial Training for Name Regularity Bias in Named Entity Recognition
Abbas Ghaddar
Philippe Langlais
Ahmad Rashid
Mehdi Rezagholizadeh
39
43
0
24 Jul 2021
Attack Transferability Characterization for Adversarially Robust Multi-label Classification
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
23
4
0
29 Jun 2021
Bio-inspired Robustness: A Review
Harshitha Machiraju
Oh-hyeon Choung
P. Frossard
Michael H. Herzog
AAML
37
1
0
16 Mar 2021
A Survey On Universal Adversarial Attack
Chaoning Zhang
Philipp Benz
Chenguo Lin
Adil Karjauv
Jing Wu
In So Kweon
AAML
25
90
0
02 Mar 2021
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson
Ziye Ma
Jingqi Li
Somayeh Sojoudi
58
1
0
22 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
156
190
0
13 Jan 2021
Achieving Adversarial Robustness Requires An Active Teacher
Chao Ma
Lexing Ying
27
1
0
14 Dec 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
36
48
0
19 Oct 2020
Data-Driven Certification of Neural Networks with Random Input Noise
Brendon G. Anderson
Somayeh Sojoudi
AAML
17
11
0
02 Oct 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
29
73
0
07 Aug 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
24
964
0
16 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
22
118
0
13 Jul 2020
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
24
52
0
24 May 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
26
18
0
19 May 2020
GeoDA: a geometric framework for black-box adversarial attacks
A. Rahmati
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
H. Dai
MLAU
AAML
31
114
0
13 Mar 2020
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
24
6
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
72
63
0
02 Mar 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
21
64
0
16 Jan 2020
Design of optical neural networks with component imprecisions
Michael Y.-S. Fang
S. Manipatruni
Casimir Wierzynski
A. Khosrowshahi
M. DeWeese
35
128
0
13 Dec 2019
Loss Aware Post-training Quantization
Yury Nahshan
Brian Chmiel
Chaim Baskin
Evgenii Zheltonozhskii
Ron Banner
A. Bronstein
A. Mendelson
MQ
37
165
0
17 Nov 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
Adversarial Robustness via Label-Smoothing
Morgane Goibert
Elvis Dohmatob
AAML
10
18
0
27 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
Fahad Shahbaz Khan
Fatih Porikli
AAML
33
145
0
28 May 2019
Body Shape Privacy in Images: Understanding Privacy and Preventing Automatic Shape Extraction
Hosnieh Sattar
Katharina Krombholz
Gerard Pons-Moll
Mario Fritz
3DH
27
3
0
27 May 2019
Assuring the Machine Learning Lifecycle: Desiderata, Methods, and Challenges
Rob Ashmore
R. Calinescu
Colin Paterson
AI4TS
27
116
0
10 May 2019
A geometry-inspired decision-based attack
Yujia Liu
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
24
51
0
26 Mar 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
22
1,998
0
08 Feb 2019
1
2
Next