Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04644
Cited By
Towards Evaluating the Robustness of Neural Networks
16 August 2016
Nicholas Carlini
D. Wagner
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Evaluating the Robustness of Neural Networks"
21 / 1,721 papers shown
Title
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
61
1,847
0
20 May 2017
MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks with Moving Target Defense
Sailik Sengupta
Tathagata Chakraborti
S. Kambhampati
AAML
29
63
0
19 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
94
2,704
0
19 May 2017
DeepXplore: Automated Whitebox Testing of Deep Learning Systems
Kexin Pei
Yinzhi Cao
Junfeng Yang
Suman Jana
AAML
48
1,354
0
18 May 2017
Extending Defensive Distillation
Nicolas Papernot
Patrick McDaniel
AAML
32
118
0
15 May 2017
DeepCorrect: Correcting DNN models against Image Distortions
Tejas S. Borkar
Lina Karam
27
94
0
05 May 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
30
287
0
19 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
25
1,237
0
04 Apr 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
51
196
0
08 Mar 2017
Tactics of Adversarial Attack on Deep Reinforcement Learning Agents
Yen-Chen Lin
Zhang-Wei Hong
Yuan-Hong Liao
Meng-Li Shih
Ming Liu
Min Sun
AAML
28
411
0
08 Mar 2017
Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
T. Dreossi
Alexandre Donzé
S. Seshia
AAML
32
230
0
02 Mar 2017
Detecting Adversarial Samples from Artifacts
Reuben Feinman
Ryan R. Curtin
S. Shintre
Andrew B. Gardner
AAML
36
891
0
01 Mar 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
39
709
0
21 Feb 2017
Deep Reinforcement Learning: An Overview
Yuxi Li
OffRL
VLM
109
1,505
0
25 Jan 2017
Vulnerability of Deep Reinforcement Learning to Policy Induction Attacks
Vahid Behzadan
Arslan Munir
AAML
SILM
26
274
0
16 Jan 2017
Learning Adversary-Resistant Deep Neural Networks
Qinglong Wang
Wenbo Guo
Kaixuan Zhang
Alexander Ororbia
Masashi Sugiyama
Xue Liu
C. Lee Giles
AAML
23
43
0
05 Dec 2016
Delving into Transferable Adversarial Examples and Black-box Attacks
Yanpei Liu
Xinyun Chen
Chang-rui Liu
D. Song
AAML
78
1,723
0
08 Nov 2016
Towards Lifelong Self-Supervision: A Deep Learning Direction for Robotics
J. M. Wong
29
11
0
01 Nov 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
Marta Kwiatkowska
Sen Wang
Min Wu
AAML
183
932
0
21 Oct 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
368
5,849
0
08 Jul 2016
Previous
1
2
3
...
33
34
35